Как застывает бетон при низких температурах


При какой температуре можно заливать бетон на улице?

Вопрос о том, при какой температуре можно заливать бетон, очень важен, так как от него во многом зависят не только технические и эксплуатационные характеристики застывшего монолита, но и вообще вероятность прохождения процесса застывания. Залитый при неверной температуре или замерзший при твердении бетон может покрываться трещинами, демонстрировать меньшие показатели прочности и стойкости в сравнении с нормативными, становиться причиной деформации или полного разрушения конструкции, здания.

Для набора бетоном проектной прочности и гарантии длительного срока службы очень важно соблюдение температурного режима как в момент заливки, так и на протяжении всего времени твердения (28 суток). Оптимальной считается температура воздуха в районе +20 градусов. Но далеко не всегда на строительной площадке удается соблюсти это условие.

Довольно часто появляется необходимость лить бетон при отрицательной температуре или в процессе выполнения работ неожиданно портится погода. В таких случаях используются разные методы прогрева бетона, в состав смеси вводят противоморозные добавки, утепляют конструкцию непосредственно на площадке и т.д. Прежде, чем использовать любой этот способ прогрева, необходимо тщательно изучить его особенности и условия реализации.

Процесс набора прочности бетонных конструкций

Чтобы определить, до какой температуры можно заливать бетон, необходимо сначала хотя бы поверхностно рассмотреть особенности процесса набора прочности монолитом. Реакция начинает протекать между цементом/водой в момент затворения. В первые часы бетон еще текучий и с ним можно работать, но уже по прошествии нескольких часов он начинает застывать, становиться сначала более густым, а потом и вовсе твердым.

Процесс взаимодействия воды и цемента называется гидратацией. Гидратация проходит в два этапа: сначала смесь схватывается, потом твердеет. В схватывании задействованы алюминаты, появляются иглообразные кристаллы, связанные между собой. Через 6-10 часов эти кристаллы становятся своеобразным каркасом, скелетом. Бетон начинает твердеть.

Весь процесс схватывания может занимать от 20 минут до 20 часов, что напрямую зависит от температуры окружающего воздуха. Дольше всего процесс проходит в холодное время года – когда на улице около 0, схватываться бетон начинает через 6-10 часов, длится этап 15-20 часов.

В процессе твердения в реакцию с находящейся в растворе водой вступают клинкерные минералы, постепенно формируется силикатная структура. Реакция провоцирует появление мелких кристаллов, они объединяются в уникальную мелкопористую структуру. Это и есть бетон, который на протяжении 28 суток уже набирает марочную прочность и стойкость, не меняя формы и структуры.

Оптимальное значение температуры для стадии твердения также равно +20 градусам, влажность – до 100%.

Отклонения от параметров существенно влияют на прочность: полное созревание монолита длится несколько лет (но набор проектной прочности должен быть завершен через 28 суток после заливки), скорость твердения меняется со временем.

Влияние отрицательной температуры на твердение бетона

Как уже было указано выше, скорость гидратации очень сильно зависит о температуры окружающей среды. Так, при снижении с +20 до +5 градусов твердение проходит медленнее в среднем в 5 раз. Дальше чем ниже температура, тем медленнее проходит реакция. При достижении минусовой температуры гидратация и вовсе прекращается (вода просто замерзает).

В момент замерзания вода имеет свойство расширяться, что становится причиной повышения давления внутри бетонного раствора и разрушения уже сформировавшихся связей кристаллов. Структура бетона разрушается и в дальнейшем восстановиться уже не может. Кроме того, появившийся в смеси лед может обволакивать крупные наполнители, разрушая сцепление с цементом. Все это существенно ухудшает монолитность конструкции и понижает прочность.

Когда вода оттаивает, твердение продолжается, но структура бетона уже деформирована. Могут появляться отслоения, деформации, трещины, наблюдаться отделение крупных наполнителей и арматуры от монолита. Чем на более ранней стадии свежезалитый бетон замерз, тем меньшим будет показатель прочности.

В каких условиях нельзя заливать бетон:
  • Когда температура окружающей среды находится на отметке +5 С и ниже, а никаких мероприятий по прогреву или повышению морозостойкости бетона осуществляться не планируется.
  • В межсезонье – когда температура нестабильна, отмечены сильные скачки как отметок на термометре, так и влажности.
  • Если термометр показывает температуру +25 градусов и выше, а влажность воздуха ниже 50%. В такое время лучше использовать специальные цементы или не проводить работы, так как процесс гидратации будет происходит очень быстро: вода испарится, а бетон не успеет набрать прочность, вследствие чего нередко появляются трещины, деформации, отслоения и т.д.

  • Заливка бетона при минусовой температуре без прогрева в течение минимум 3 дней до отметки в +10-30 градусов.
  • Когда уже приготовлен бетон со специальными присадками, а за окном внезапно наступила оттепель или влажность воздуха стала выше 60%, начался дождь и т.д.
  • В случае неумения определить оптимальный режим прогрева, настроить приборы, контролировать бетон в мороз. Ведь для бетона одинаково страшны как мороз, так и перегрев.
При какой оптимальной температуре можно заливать бетон:
  1. От +5 до +20 градусов – нормальные условия для заливки бетона, приготовленного по стандартному рецепту.
  2. От нуля до +5 градусов – исключительно с использованием специальных добавок.
  3. От 0 до -20 градусов – со специальными добавками и прогревом.
  4. Идеальные условия – температура бетона +30 и воздуха +20, влажность до 100%.

Бетонирование зимой

Использовать бетон в мороз может понадобиться в самых разных случаях – когда невыгодно останавливать строительство на целый сезон, в случае выполнения экстренных работ и т.д. С учетом губительного воздействия минусовой температуры на материал и его технические характеристики, бетон нужно прогревать. В случае, когда температура внутри раствора выше температуры снаружи, могут появляться деформации.

Прогрев бетона осуществляется до момента набора критического показателя прочности. Если таковых данных нет в проектной документации, то значение принимают в 70% от проектной прочности. Когда есть требования со значениями водонепроницаемости/морозостойкости, то критическая прочность составляет 85% от проектной.

Основные методы прогрева бетона для заливки при минусе:
  • Прогрев самих компонентов для приготовления смеси.
  • Использование эффекта термоса.
  • Осуществление электронагрева.
  • Применение паропрогрева.

Таким образом, вопроса о том, при какой минимальной температуре можно заливать бетон, нет вообще. Задача заключается в том, чтобы в соответствии с условиями работ оптимально подготовить смесь и объект для сохранения технических свойств материала и основных требований по прочности, надежности, долговечности.

Самый простой и дешевый вариант – прогрев всех компонентов, использующихся для приготовления бетона. Их греют для того, чтобы в момент заливки бетон имел минимум +35-40 градусов.

Греют все материалы, кроме цемента: щебень/песок до +60, воду до +90, цемент просто на время оставляют в теплом помещении (чтобы был комнатной температуры). Потом смешивают все компоненты и выполняют заливку.

Метод термоса

Этот вариант актуален в случае заливки массивных конструкций. Дополнительного прогрева не предусматривается, но укладываемая смесь должна демонстрировать температуру в +10 градусов как минимум (лучше больше). Данный метод заключается в том, чтобы залитая смесь в процессе остывания успела приобрести критическую прочность.

Принцип работы этого метода заключается в том, чтобы бетон вступил в реакцию и начался процесс затвердевания, который является экзотермическим (то есть, сопровождается выделением тепла). Таким образом, бетоном будет выполняться самоподогрев. Если исключить теплопотери, бетон может прогреться до +70 и выше.

Опалубку надежно защищают теплоизолирующими материалами, устраняя теплопотери бетона, находящегося в процессе затвердевания. Вода не замерзает, бетонный монолит постепенно набирает прочность без разрушения внутренней структуры. Такой вариант используют для заливки фундаментов зимой, он считается наиболее простым и экономичным, так как не требует использования какого-либо оборудования.

Электронагрев бетонной смеси

Задумываясь о том, при каких температурах можно заливать бетон, многие рассматривают в качестве выхода из ситуации электропрогрев. Осуществляться прогрев может с использованием нескольких способов: с применением электродов, метода индукции и с различными электронагревательными устройствами.

Нагрев электродами осуществляется так:
  • В свежезалитую смесь вводят электроды.
  • Потом на электроды подают ток.
  • В процессе прохождения тока по электродам они нагреваются, передают тепло бетону.

Ток должен быть переменным, так как постоянный станет причиной прохождения процесса электролиза, который сопровождается выделением газа. Газ экранирует поверхность всех электродов, значительно возрастает сопротивление тока, в результате чего нагрев заметно снижается. В случае, если в бетоне уложена арматура, она может использоваться в качестве электрода.

Чтобы данный способ сработал, необходимо сделать так, чтобы бетон прогревался равномерно и максимум до +60 градусов. Расход электроэнергии в таких случаях обычно не превышает 80-100 кВт*ч на кубический метр бетонного раствора.

Индукционный нагрев применяется достаточно редко, так как его реализация предполагает ряд сложностей. Данный тип прогрева бетонной смеси работает на принципе бесконтактного нагрева высокочастотными токами электропроводящих материалов. Так, вокруг стальной арматуры мотают изолированный провод, а через него пропускают ток. Таким образом появляется индукция, арматура нагревается и греет бетон. Расход электроэнергии составляет обычно 120-150 кВт*ч на кубический метр бетона.

Применение электронагревательных приборов предполагает использование самых разных средств для уменьшения негативного воздействия мороза на процесс гидратации смеси. Это могут быть греющие маты, к примеру, которые раскладывают на бетон и затем подключаются к сети. Можно сделать над залитым монолитом что-то типа палатки, установить внутри тепловую пушку и греть.

Тут важно обеспечить удержание влаги в бетоне, чтобы он, в процессе прогрева, не пересох, что также негативно влияет на качество и прочность, как и холод (при замерзании). Расход электроэнергии (при условии, что температура окружающего воздуха составляет около -20 градусов) составляет 100-120 кВт*ч на кубический метр.

Паропрогрев бетона в зимнее время

Когда температура окружающей среды на нуле или ниже, есть смысл задуматься о прогреве бетона паром. Данный метод особенно эффективен для тонкостенных конструкций. В опалубке с внутренней стороны делают каналы, через них пускают пар. Иногда делают двойную опалубку, а пар пропускают между двумя стенками.  Можно смонтировать трубы внутри бетона, а затем по ним пускать пар.

С использованием данного метода можно прогреть бетон до +50-80 градусов. Столь высокая температура и оптимальная влажность ускоряют в несколько раз процесс твердения. Так, за 2 суток при паропрогреве бетон набирает прочность, аналогичную твердению в течение недели в нормальных условиях.

Единственный недостаток данного метода – существенные затраты времени, финансов и усилий для его реализации.

Использование присадок при морозе

Сегодня очень распространено использование противоморозных добавок и особых химических ускорителей твердения бетона. Чаще всего в качестве этих добавок выступают нитрит натрия, хлористые соли, карбонат кальция и другие. Добавки существенно понижают температуру замерзания воды, активизируют гидратацию цемента (таким образом повышается температура застывания бетона).

Благодаря введению в состав смеси добавок можно избежать необходимости прогрева. Некоторые добавки способны повысить стойкость бетона к морозу настолько, что вопрос о том, можно ли заливать бетон при минусе, не стоит вообще: гидратация проходит даже при окружающей температуре -20 градусов.

Но, несмотря на все преимущества, присадки обладают и некоторыми недостатками.

О чем нужно помнить, вводя в бетон присадки:
  • Они пагубно влияют на арматуру – может начаться процесс коррозии, поэтому актуально вводить добавки лишь в неармированный бетон.
  • Добавки позволяют бетону набрать прочность, равную максимум 30% от проектной, а потом при оттаивании смеси (при плюсовой температуре) процесс набора прочности продолжается. В связи с этим, по СНиП, добавки нельзя вводить в бетон, работающий в условиях динамических нагрузок (молоты, вибростанки и т.д.).
Основные виды противоморозных добавок:
  1. Сульфаты – активно выделяют тепло, сопровождая процесс гидратации. Прочно связываются с труднорастворимыми соединениями, для снижения температуры замерзания смеси их использовать нельзя.
  2. Антифриз – уменьшает температуру кристаллизации жидкости, увеличивает скорость схватывания раствора, на скорость формирования структур не влияет.
  3. Ускорители – повышают растворимость силикатных компонентов цемента, они реагируют с продуктами гидратации, создают основные и двойные соли, которые понижают температуру замерзания жидкости в растворе.

Наиболее распространенные противоморозные добавки:
  • Карбонат кальция (поташ) – кристаллическое вещество, противоморозный компонент, который ускоряет схватывание и затвердевание. Понижает прочность бетонного монолита на 20-30%, поэтому его обычно сочетают с сульфидно-дрожжевой бражкой (тетраборатом натрия) в концентрации максимум 30%.
  • Тетраборат натрия (сульфатно-дрожжевая бражка) – смесь солей кальция, натрия, аммония либо лигносульфоновых кислот. Добавка используется в виде примеси к поташу, не дает бетону терять прочность.
  • Нитрит натрия – кристаллический порошок, ядовитое пожароопасное вещество, применяется при возведении многоэтажных зданий, легко растворяется, не разрушает арматуру, повышает скорость застывания в 1.5 раза.
  • Формиат кальция или натрия – используется с пластификаторами в объеме не более 2-6% от массы раствора. Добавляется в процессе замеса.
  • Аммиачная вода – раствор аммиака в концентрации 10-12%, не провоцирует корродирования металла, не дает высолов.

Бетонирование в условиях сухого жаркого климата

Бетон не любит не только мороза, но и жары. Когда температура воздуха повышается до +35 и выше, а влажность находится на уровне 50%, вода испаряется слишком быстро, что провоцирует нарушение водоцементного баланса. Гидратация замедляется либо прекращается вовсе, в связи с чем бетон нужно защищать от слишком быстрой потери влаги.

Для понижения температуры смеси используют охлажденную (либо разбавленную льдом) воду. Так устраняют быстрое испарение воды в процессе укладки смеси. Через определенное время смесь нагревается, поэтому важно обеспечить герметичность опалубки (чтобы вода не испарялась через щели). Опалубка также может впитывать влагу, в связи с чем для ограничения адгезии бетона и материала конструкции до заливки ее обрабатывают специальными составами.

Твердеющий бетон защищают от прямых ультрафиолетовых лучей – поверхность укрывают брезентом (мешковиной), каждые 3-4 часа осуществляют смачивание поверхности. Увлажнение может понадобиться все 28 суток набора прочности монолитом.

Часто для защиты бетона от жары используют такой метод: над поверхностью создают воздухонепроницаемый колпак из ПВХ пленки толщиной минимум 0.2 миллиметра.

Приготовленный по рецепту бетон способен схватиться, затвердеть и приобрести все проектные характеристики при окружающей температуре +20 градусов и влажности около 100%. В случае проведения работ на морозе или жаре необходимо позаботиться о мерах прогрева или охлаждения, которые будут гарантировать прочность и долговечность готовой конструкции.

Температура застывания бетона: низкая, минимальная и оптимальная

От прочности фундамента будут зависеть качество и долговечность здания. При подготовке такого «нулевого» цикла работ требуется соблюдать многие факторы и тщательно ознакомиться с информацией о температуре застывания бетона. Если не учитывать условия погоды при заливке фундамента, качество и марку раствора, температурные режимы его застывания и виды добавок, то такая трудоёмкая работа может оказаться напрасной.

Подготовка к заливке фундамента

Иногда строительство капитальных сооружений, особенно частных, происходит без учёта времени года. Это может быть оправданным решением, но сложностей окажется немало уже на стадии подготовительных работ. Они состоят из нескольких этапов:

  1. Площадь, предназначенная под фундамент, должна быть очищена от верхнего слоя почвы и размечена в соответствии с проектом. При морозной погоде это будет довольно трудоёмкой задачей.
  2. Далее нужно произвести разметку ширины траншеи под фундамент. Глубина её определяется глубиной промерзания грунта, этажностью возводимого сооружения, материалом, который будет использоваться при строительстве. Землеройная техника не всегда применима, так как стенки траншеи должны быть узкими, глубокими и ровными.
  3. Для гидроизоляции и укрепления дно котлована трамбуется песком (слоем в 90—150 мм), затем щебнем. Обычно зимой этот строительный материал находится в подмёрзшем состоянии. Есть вероятность того, что с потеплением утрамбованный слой потеряет нужную плотность, а это может отразиться на прочности будущей постройки.
  4. Следующий этап работ — установка опалубки. Используются для этого доски или деревянные щиты, а для гидроизоляции — плотная полиэтиленовая плёнка. Сильный мороз влияет на эластичность плёнки. Она становится ломкой, на ней возможно появление прорех, что нарушает гидроизоляцию фундамента.
  5. Дальше изготавливается армированная конструкция, которую можно сварить или скрутить при помощи стальной проволоки. Толщина используемой арматуры составляет от 8 до 18 мм. Одно из свойств стали — сужаться или расширяться при перепадах температуры, поэтому сваренный арматурный каркас на сильном морозе при повышении температуры будет менять свои размеры, что отразится на прочности фундамента.

Преимущества зимних работ

Иногда возникают ситуации, когда изготовление фундамента в зимнее время будет лучшим вариантом. Для этого могут быть разные причины:

  1. Особенности почвы местности. Если грунт сыпучий, лучше возводить фундамент в мёрзлой почве для сохранения нужной формы котлована.
  2. Климатические условия региона в летнее время не позволяют проводить строительные работы.
  3. К стройке в зимнее время прибегают с целью экономии средств. В этот период цены на строительные материалы снижаются.
  4. Строительные фирмы снижают стоимость услуг, так как резко падает спрос на их деятельность в зимнее время.

После подготовительных работ можно приступать к расчёту состава бетонного раствора, обязательно учитывая то, при какой температуре будет происходить его заливка в опалубку.

Твердение бетонной массы зимой

В какое время года не проводилась бы заливка фундамента, раствор готовят из цемента и щебня средней величины с добавлением пластификаторов. С добавками бетон приобретает прочность, улучшаются его состояние и влагостойкость. Пластификаторы повышают устойчивость раствора к морозам, поэтому их часто применяют, изготавливая фундамент при низких температурах воздуха.

Минимальная температура застывания бетона составляет не ниже +5 °C. Это крайний показатель для качественного созревания. Но и жаркая погода не особо подходит для строительных работ. Оптимальный температурный режим — от +15 до +20 °C. Соблюдая такие условия, можно создать без дополнительных затрат и технологий прочное основание под возведение здания.

Необходимо знать, при какой температуре застывает бетон. Нормальной температурой воздуха для его затвердения специалисты считают от +15 до +20 °C. Период застывания фундамента длится около 30 дней. Если температура ниже нормы, твердение бетона происходит медленнее — он достигнет нужной прочности примерно через 60 дней. Когда температура ниже 0 °C, процесс приостанавливается. При минусовой температуре залитый в опалубку раствор замораживается. Если фундамент уже успел набрать необходимую прочность, то весной после оттаивания продолжится процесс его твердения до полноценного конечного результата.

В случае недостаточной прочности перед замораживанием качество монолита будет неудовлетворительным. Вода в бетонном растворе при замерзании превратится в лёд и увеличится в объёме, что приведёт к пористости и трещинам в бетоне. В итоге сократятся эксплуатационные сроки строения.

Существуют методы, с помощью которых твердение бетона при низких температурах можно довести до состояния критической прочности к моменту его замерзания. По действию они делятся на три вида:

  • обеспечивается внешний уход за залитым в опалубку раствором до степени критической прочности;
  • с помощью электроподогрева повышается температура бетонной массы до момента максимального твердения;
  • введение в раствор модификаторов, ускоряющих процесс застывания.

Возможность зимнего бетонирования зависит от многих факторов: наличия на строительной площадке источников питания, погодных условий на момент твердения, возможности доставки разогретого бетона. Самым простым и экономически выгодным методом является внесение в раствор модификаторов.

Добавки в раствор

Осуществляя способ бетонирования с использованием добавок, заливку раствора зимой производят без прогрева. Добавки применяются в холодную пору и делятся на два вида:

  1. Вещества, которые понижают точку замерзания воды в бетонном растворе: поташ, хлориды кальция, натрия, нитрит натрия и их сочетания. Они обеспечивают довольно хорошее твердение при отрицательных температурах. Разновидность добавки подбирается согласно требованиям к температуре затвердения раствора.
  2. Компоненты, которые ускоряют период твердения. Это модификаторы. К ним относятся поташ и содержащие в своём составе смеси хлорида кальция с мочевиной или нитритом кальция.

Объем химических соединений, вводимых в раствор, составляет от 2 до 10% от веса цементного порошка. Количество их определяют согласно ожидаемой температуры твердения бетона. С использованием противоморозных добавок возможно проведение бетонирования и при -25 °C. Но такие эксперименты не рекомендуется делать частным строителям. Заливка при минимальных температурах сопровождается рядом особенностей и требований по выполнению работ. Главным моментом является недопущение заморозки и разморозки раствора.

Единственным достоинством возведения фундамента в зимние месяцы является то, что уже ранней весной можно будет начать строительные, а затем отделочные работы и продолжить их до конца осени.

Заливка бетона при минусовой температуре без прогрева: методы и рекомендации

При температуре ниже нуля затвердевание бетонного раствора становится проблематичным. Часто с этим сталкиваются при устройстве фундаментов осенью и зимой. Специалисты уверяют, что заливка бетона при минусовой температуре возможна и без прогрева, но для этого выполняются определенные требования, обеспечивающие правильное затвердевание бетонной смеси.

Влияние температуры на твердение бетона

Бетон представляет собой смесь из наполнителей – песка и щебня, скрепленных между собой застывшим цементным молочком. При реакции с водой происходит его гидратация, затем он затвердевает с одновременным испарением воды. Критическая прочность при нормальной температуре набирается в течение одних или полутора суток, в зависимости от влажности окружающего воздуха.

Оптимальной для протекания реакции является температура около 20⁰С, раствор набирает расчетную прочность в течение 28 суток. Чтобы в первые дни вода не улетучивалась слишком быстро, бетон покрывают гидроизоляцией.

При 5⁰С застывание состава замедляется в 2 раза, а при нулевой температуре гидратация прекращается. Если до этого критическая прочность бетона набрана, с ним ничего не случится, он наберет прочность после потепления. Если же до замерзания набор критической прочности не произошел, материал не наберет нужных показателей, и будет крошиться после размораживания. В этом случае заливать любую марку бетона при минусовой температуре нельзя.

Методики бетонирования в зимних условиях

Главным условием правильной заливки бетона при отрицательных температурах является сохранение теплоты, достаточной для обеспечения набора прочности. Популярные способы укладки строительных растворов зимой:

  • Предварительный прогрев изготавливаемой смеси;
  • Устройство надежной теплоизоляции и уход за раствором;
  • Электроподогрев залитого в опалубку бетона;
  • Добавка специальных присадок, снижающих температуру замерзания воды и ускоряющих затвердевание.

Таким образом, бетонировать на улице зимой можно без потери показателей прочности, но для этого нужно придерживаться выбранных методик. По затратам использование тепловых пушек является самым нерентабельным вариантом, наиболее дешевой методикой является добавка присадок. Электроподогрев и устройство теплоизоляции представляют собой промежуточные варианты.

Повышение температуры в процессе замеса

Чтобы залить бетон в минусовую температуру, компоненты подогревают. Наполнители нагреваются до 55-60⁰С, а воду подают в раствор при 90⁰С. Цемент перед добавлением разогревается до комнатных температур, иначе он теряет скрепляющие свойства. Перед укладкой температура раствора не должна быть ниже 35⁰С.

При перемешивании требуется использовать бетономешалку, в которую подается сначала нагретая вода, затем наполнители, и только потом цемент. При заливке такой смеси, тепловой энергии монолита хватает, чтобы набрать критическую прочность, с учетом того, что при гидратации цемента выделяется дополнительное тепло.

Подогрев и утепление раствора

При очень низких температурах нагретая смесь требует дополнительного утепления или подогрева. Экономически более целесообразно утепление, при помощи недорогих теплоизолирующих материалов, не требующих дополнительных источников энергии. На бетонированной поверхности выстилают сено или солому, используют старые тряпки, торф, пленку или теплоизолирующие покрывала. Иногда устраиваются так называемые «тепляки» схожие с теплицами.

Если бетонировать при температурах ниже -5⁰С, потребуется дополнительный подогрев. Для этого используются следующие технологии:

  • Обогрев тепловыми пушками или печами под тепляками. Это затратный метод, требующий постоянного дополнительного увлажнения. Подходит для площадок, к которым не проведено электричество.
  • Применение термоматов, работающих от электричества. Они выкладываются на поверхность залитого бетона и подключаются к источнику тока. Требуют большой объем электроэнергии.
    Инфракрасные излучатели устанавливаются над залитой поверхностью или вокруг опалубки, интенсивность и направление нагрева регулируется отражателями. Подходит для вертикальных и малодоступных конструкций.
  • Для прогрева бетонированной площади применяют специальные кабеля или электроды, по которым пропускают электрический ток. Методика удобна при использовании, но требует больших объемов электроэнергии. Установка системы электродов требует больше затрат, поскольку при высыхании сопротивление раствора, который сам является проводником, возрастает.

Введение добавок

Улучшение характеристик раствора специальными присадками, это самый удобный и экономный метод заливки раствора зимой. Применяя его совместно с обогревом, можно ускорить выполнение работ и повысить качество бетона. Различают два основных типа присадок для заливки бетоного раствора зимой:

  1. Составы, уменьшающие температуру замерзания воды. Раствор застывает довольно долго, но вода не кристаллизуется, поэтому качество бетона не страдает. Для ускорения реакции требуют теплоизоляции. В этом качестве используют соли кальция или натрия и поташ, которые препятствуют кристаллизации воды.
  2. Добавки, увеличивающие скорость затвердевания раствора. Сокращают время, необходимо для набирания бетоном критичной прочности, поэтому вода в прогретой смеси не успевает кристаллизоваться. Применяется нитрит-нитрат кальция, тот же поташ, соли кальция в смеси с мочевиной.

Количество присадок зависит от температурного диапазона, в котором будет производиться заливка бетонной конструкции. От -5 до -10⁰С добавляют до 5-8% от массы цемента. Со снижением температуры до -15⁰С концентрацию увеличивают до 10% по массе от добавленного цемента, а до -25⁰С нужно добавлять не менее 15% добавок.

Общие рекомендации при заливке

Чтобы достигнуть максимальной прочности, нужно знать, при какой температуре заливать бетон, и оптимальные методики обеспечения твердения. Кроме того, требуется правильная подготовка опалубки. Перед заливкой раствора, необходимо тщательно очистить ее от наледи. Грунт и арматуру нужно прогреть, для чего применяются жаровни, тепловые пушки, инфракрасные излучатели и другие устройства. Именно поэтому делать плитные фундаменты в низком температурном диапазоне не рекомендуется, поскольку сложно полностью обогреть все элементы на большой площади.

Работа с ленточным фундаментом в такую погоду вполне возможна. Для этого нужно прогревать траншею постепенно, заливая в нее бетон. После заливки обязательный этап – качественная термоизоляция. Процесс продолжается до тех пор, пока периметр не замкнется. С применением добавок в бетонный раствор и качественной изоляцией ленточный фундамент можно заливать при температуре до -15⁰С.

При работе по укладке бетона, независимо от типа конструкции, нужна непрерывность выполнения работ до полной заливки монолита. Для успешного выполнения работ необходимо рассчитать обеспечить поставку нужного количества раствора и оптимальное число работников.

Заливка частями может привести к неравномерности свойств конструкции и снижению ее качества.

Перед тем, как заливать раствор в опалубку, необходимо убедиться, что его температура оптимальна – в районе 38⁰С. Если она превысит 40 градусов, то скорость затвердевания снизится за счет снижения качества цемента. В результате, для того, чтобы набралась критическая прочность, потребуется слишком много времени, жидкость в растворе рискует замерзнуть, и бетон потеряет свои свойства.

Отвечая на вопрос, возможна ли заливка бетона зимой, можно утверждать – однозначно да. При правильном технологическом подходе эти работы можно проводить при самых низких температурах. Укладка без дополнительного прогрева может производиться при небольших морозах, для этого потребуется хорошая термоизоляция и предварительный нагрев бетонного раствора.

При низких температурах требуется дополнительный прогрев массы бетона. Он осуществляется различными методами, выбирать которые нужно непосредственно на строительной площадке. Затраты на обогрев и теплоизоляцию окупаются, поскольку некондиционный бетон снизит качество всей конструкции.

Твердение (время схватывания) бетона в зависимости от температуры

Заливка бетона в холодное и жаркое время года требует особых навыков и знаний, т.к. работы с цементной смесью осложняются, а период ее высыхания резко уменьшается или возрастает. Изменение скорости твердения бетона в зависимости от температуры обусловлено замедлением процессов гидратации и удержанием большого количества жидкости в толще материала.

Для ускорения застывания и предупреждения дефектов используются специальные строительные приемы, полимерные и противоморозные добавки.

Главные параметры по которым выбираются добавки для бетонного раствора — это назначение будущей конструкции, температура и сменяемость окружающей среды, потребность в декоре т.е чистовой или черновой слой.

Стадии набора прочности бетонной конструкцией

Схватывание и твердение растворов на основе цемента обусловлено его химическим взаимодействием с водой. Силикаты, алюминаты и алюмоферриты, которые входят в состав портландцемента, обеспечивают повышение прочности на различных стадиях отверждения.

Скорость химических реакций зависит от наличия катализаторов (специальных добавок) и температуры.

Бетонные конструкции бывают разные, исходя из этого следует рассчитывать соотношение компонентов раствора и предполагать сроки схватывания и твердения.

Стадия схватывания

В состав цементного порошка входит трехкальциевый алюминат (3СаО*Al2O3), трехкальциевый силикат (алит, 3СаО*SiO2), двухкальциевый силикат (белит, 2CaO*SiO2) и алюмоферрит. Алит, который занимает большую часть массы портландцемента, участвует в обеих стадиях отверждения. При затворении водой и в начале стадии схватывания он выделяет тепло, которое увеличивает скорость реакции.

Однако более активным компонентом цемента на этапе схватывания является трехкальциевый алюминат. В течение 24 часов после смешивания он интенсивно реагирует с водой, формируя первичные связи в бетоне. После окончания схватывания алюминат полностью утрачивает влияние на прочность цемента.

Итоговая прочность бетона в зависимости от марки, времени затвердевания и температуры воздуха.

Стадия схватывания проходит в первые часы после заливки опалубки. Скорость начала реакции и длительность процесса зависят от состава смеси и температуры воздуха. При нормальных температурах (+18…+22°С) бетон схватывается через 2,5-3 часа. Из них 1,5-2 часа проходит до начала реакции, а 1 час уходит непосредственно на схватывание.

При снижении температуры начало реакции может отодвинуться на 4-8 часов, а ее продолжительность — увеличиться до 15-20 часов.

В горячей среде схватывание происходит активнее и начинается более быстро. Весь процесс может занять менее 1-2 часов, из которых реакция — 15-20 минут.

Стадия твердения

Стадия формирования бетонного камня начинается по завершении схватывания. Твердение материала происходит за счет удаления свободной воды. Часть жидкости испаряется во внешнюю среду, а другая — связывается с молекулами силикатов и алюминатов, образуя стойкие комплексы. Чтобы не нарушить баланса между связываемой и испаряющейся водой, нужно обеспечить оптимальную влажность и температуру среды.

Основным реагентом на стадии твердения является алит. Белит обеспечивает постепенное упрочнение материала в процессе эксплуатации: за счет его свойств прочность материала через 2-3 года может составлять до 250% прочности после твердения.

Стандартный срок затвердевания бетона

Стандартное время застывания бетона составляет 28-30 дней. Нормальные условия для отверждения — температура +15…+22°С и влажность 60-100%. Длительность отверждения зависит от условий процесса, марки бетона и наличия дополнительных добавок в растворе.

Корреляция прочности бетона с временем выдерживания и температурой среды.

Зависимость времени набора прочности от марки бетонной смеси

Повышение прочности бетона на сжатие коррелирует с увеличением вязкости смеси. Это означает, что с увеличением марки материала время схватывания и твердения сокращается.

Продолжительность реакций для бетона разных марок

Марка материалаВремя схватывания, часовВремя твердения, суток
М1003-3,5До 30
М2002-2,514-25
М3001,5-27-14
М4001-24-7
М500<12-4

Продолжительность набора прочности зависит от состава смеси, влажности, температуры внешней среды и материала.

Марка и назначение раствора определяют и критическую прочность бетонного камня. Это значение, по достижении которого конструкция продолжит твердеть после замерзания без потери эксплуатационных свойств. Данный показатель зависит от марки следующим образом:

  • для бетона М100 и М150 он соответствует 50%;
  • для М200, М250, М300 и М350 — 40%;
  • для М400, М450 и М500 — 30%;
  • для нагруженных конструкций (вне зависимости от марки) — 70%.

Если в момент замерзания образец имеет соответствующий уровень прочности на сжатие, то температурные перепады незначительно повлияют на его прочность. При замерзании на ранних стадиях твердения без применения противоморозных добавок прочность готовой конструкции падает не менее чем на 50%. Например, для марки М200 критической точкой прочности является 80 кгс/см² или 8 МПа.

Наиболее часто для фундаментов и нагруженных конструкций используются марки бетона от М300. Снятие опалубки со стандартных конструкций допускается через 4-5 дней при наличии щелей между щитами формы и бетоном. Для перекрытий и лестниц длиной не более 6 м время выдержки продлевается до 14 дней, для длинных лестниц — до 28 дней. Мосты, дамбы и другие ответственные и тяжело нагруженные конструкции выдерживаются в форме до 90 дней.

Специальные добавки

Стремительное или слишком медленное схватывание и твердение смеси снижает прочность бетона. Медленное застывание дополнительно увеличивает расходы на уход за конструкцией. Для коррекции скорости отверждения применяются добавки, которые регулируют кинетику процесса.

Существует два типа добавок, регулирующих процесс твердения раствора:

  1. Ускоряющие. Реагенты этого типа сокращают время до начала схватывания на 30-40%, ускоряют затвердевание и улучшают прочностные свойства материала. Они добавляются в смесь при промышленной штамповке бетонных изделий, заливке фундаментов, перекрытий и иных строительных конструкций при пониженных температурах. Наиболее дешевые ускоряющие добавки — это хлористый кальций и поташ (углекислый калий). В перечень востребованных строительных составов для ускорения отверждения входят: Релаксор, Аддимент В3, Форт-УП2, Поззолит-100, Конкрит-Ф и др.
  2. Замедляющие. Пластификаторы и замедлители схватывания положительно влияют на удобоукладываемость и подвижность раствора. Они применяются при доставке бетона в передвижных смесителях, задержках в строительстве и заливке конструкций при температуре выше +25…+30°С. Пластифицирующие свойства замедлителей позволяют отказаться от виброуплотнения при укладке бетона с малой подвижностью. Наиболее распространенными замедляющими добавками являются НТФ-кислота, цитрат и глюконат натрия, Линамикс, SikaPlast 520 N, Frem Linas 200 и др.

При заливке в условиях низких температур используются противоморозные реагенты. Они понижают температуру замерзания воды, препятствуя ее фазовым переходам при 0…+4°С.

В зависимости от вида и концентрации добавок они позволяют работать с бетонным раствором при температуре до -15…-25°С. К морозоустойчивым реагентам относятся нитрит натрия, нитрат-нитрит кальция, карбамид и др.

Набор прочности бетона в зависимости от температуры

Температура окружающей среды определяет скорость реакций, которые формируют бетонный камень. Повышенная температура воздуха смещает баланс в сторону испарения жидкости, а пониженная — тормозит процессы гидратации в растворе.

При высоких температурах

В сухом и горячем воздухе испарение воды происходит быстрее, а оставшейся жидкости может не хватить для полноценной гидратации. В результате снижается надежность конструкции, а ее прочность на сжатие в верхних и центральных слоях существенно различается.

Для профилактики неравномерности и быстрого высыхания в бетон добавляются замедляющие добавки, а готовая конструкция смачивается в процессе застывания.

Высокая температура и влажность применяются при производстве стандартных бетонных изделий в автоклавах. Такие условия обеспечивают быстрое схватывание и максимальное твердение конструкций.

В прохладное время

При низких температурах раствор долго схватывается, а затем в течение длительного времени остается хрупким по сравнению с марочной прочностью. Химические реакции происходят до температуры фазовых превращений воды.

При отрицательной температуре

Когда температура среды опускается ниже 0°С, вода замерзает, а гидратация в растворе — прекращается. При прогреве воздуха процесс отверждения возобновляется, но прочность конструкции после перерыва может снизиться.

Набор прочности бетона при различных температурах

Срок застывания, сутокДоля от 28-суточной прочности, достигнутой при оптимальных условиях твердения
При -3°СПри 0°СПри +5°СПри +10°СПри +20°СПри +30°С
1359122335
261219254055
381827375065
5122838506580
7153548587590
142050627290100
2825657785100

В таблице рассмотрен набор прочности материала марок М200 и М300.

Снижение вязкости раствора

Во время схватывания бетонный раствор сохраняет свою пластичность. При движении в стационарной или подвижной бетономешалке смесь проявляет свойство тиксотропии — уменьшения вязкости состава при постоянной динамической нагрузке.

Характеристики действия пластификаторов на примере одного из наиболее популярных.

Слишком длительное перемешивание приводит к «перевариванию» бетона и снижению конструктивной прочности готовой конструкции. Чтобы сохранить подвижность раствора и избежать негативных эффектов, в смесь добавляются пластификаторы. Они удлиняют периоды схватывания и застывания.

Снизить вязкость смеси на стадии затвердевания нельзя. Механическое воздействие на застывающий бетонный камень приводит к формированию дефектов и растрескиванию конструкции. До достижения минимально допустимого уровня прочности застывающий бетон следует предохранять от ударов, вибрации и др.

Зависимость уровня набора прочности от показателей температуры материала

Низкая температура ингредиентов отрицательно влияет на эксплуатационные характеристики бетонного камня. Если для смешивания используется холодная вода и наполнитель, то последующий уход за конструкцией не сможет обеспечить марочную прочность.

Учитывайте, как может измениться температура окружающей среды пока бетон будет затвердевать.

При температуре менее 10°С рекомендуется подогревать воду, которая применяется для изготовления. Если показатель термометра соответствует -5…0°С или ниже, то необходимо подогревать и мелкий наполнитель (речной песок).

Для сокращения времени схватывания и расходов на подогрев бетона в опалубке компоненты разогреваются до предельно допустимого уровня. Максимальное значение определяется составом и маркой портландцемента. При нагреве выше этой температуры готовая смесь будет реагировать менее интенсивно, что скажется на прочности конструкции.

Предельная температура компонентов бетонного раствора

Вид цементаМаксимальная температура воды для затворения, °СПредельная температура наполнителя, °СМаксимальная температура бетонного раствора после вымешивания, °С
Глиноземистый402025
Портландцемент марки М400 и выше

Пуццолановый цемент марки М300 и выше

604035
Портландцемент марок М300 и М350

Цемент с пуццоланой М200

805040
Шлакопортландцемент М200 и М300906045

Рекомендации по ускорению процесса

Соблюсти необходимые условия для заливки не всегда возможно: в жаркую и холодную погоду температура отклоняется от оптимальной не менее чем на 15-20°С, а влажность может составлять ниже 60%.

Чтобы избежать пагубного влияния низкой влажности, высоких и низких температур, бетонщики прибегают к специальным методам ухода. К ним относится обработка горячим влажным паром, применение теплых опалубок, закладка электродов и греющих проводов в тело бетонного изделия и др.

При заливке фундамента строители прибегают к мерам защиты бетона на этапе смешивания, но редко дополнительно подогревают готовую конструкцию. Это обусловлено тем, что основа здания должна пройти этапы усадки и стабилизации грунта. В этом случае возникшие дефекты не скажутся на прочности дома, а будут устранены с помощью дополнительного слоя бетона.

Замерз бетон: критические температуры и последствия

Для того чтобы бетон набрал прочность и не промерз при низких температурах воздуха, необходимо соблюдать оптимальные условия его затвердевания. Жара или сильные морозы не подходят для работ по бетонированию. Подходящим временем считается осенний или весенний период. Какие же последствия возникают при несоблюдении температурных параметров для заливки бетона и как избежать замерзания конструкции?



При какой температуре замерзает бетон

Для застывания бетонной смеси нормальным является температурный режим не ниже +5 градусов. Работы, как правило, проводятся при температуре воздуха от +15 — до +20 градусов. Соблюдение рекомендуемых условий позволит избежать применения дополнительных технологий и избежать лишних затрат.

Затвердевание основания и поверхности бетонной конструкции происходит за месяц при поддержании температуры в пределах +15 — +20 градусов. При температуре ниже +15 градусов процесс растягивается вплоть до 60 дней, при нуле — затвердевание прекращается. Залитый в опалубку раствор при минусовых значениях начинает замерзать.

В том случае, если фундамент успел окрепнуть до наступления холодов, резкие перепады температур не страшны. В весенний период приостановленный процесс возобновляется. В результате фундамент не промерзает и не трескается. Но если бетон не успевает набрать прочность, то при резких заморозках монолит получается неудовлетворительного качества.

Промерзает залитый бетон уже при отметке -15 градусов. Для крепкого основания такая погода не страшна. Не затвердевший материал промерзает при -20 градусах.

Какие могут быть последствия

Замерз бетон при заливке

Если во время заливки фундамента температура воздуха снижается до минусовых отметок, то возможны следующие последствия:

  • залитая плита не набирает прочность;
  • даже разовое замерзание может повлечь снижение технологической прочности;
  • внутри бетона скапливается вода, которая из жидкого агрегатного состояния превращается в лед;
  • поверхностный слой со временем облупливается, что ведет к появлению трещин;
  • образовавшийся в расщелинах бетона лед снижает сцепление отдельных составляющих, что также ведет к трещинам и расслоению поверхности.

При замерзании смеси в процессе заливки в расщелинах скапливается лед, который неминуемо увеличивается в размерах и создает разрывы. Это ведет к разрыхлению монолита и снижению прочности. В итоге начинает расти влагопроницаемость. Процесс гидратации воды приводит к поднятию скопившейся жидкости на поверхность бетона. Во время заморозков растрескиванию подвергается сначала верхний слой плиты.

Во внутренней части фундамента в результате химической реакции между цементом и водой выделяется тепло. Это помогает снизить риск промерзания бетона по глубине заливки.

Замерз бетон после заливки

Если работы проводились с соблюдением оптимальных температурных условий, но после их завершения на улице резко похолодало, то возможны следующие последствия:

  • При временном понижении температуры сильных деформаций внутри и на поверхности залитого материала не происходит. При восстановлении погоды скопившийся в бетоне лед оттаивает. Вода никак не мешает продолжению процесса затвердевания.

Ненадолго примороженный бетон не теряет первоначальных качеств. Единственным минусом, и то не критичным, можно назвать процесс потери заявленной марочной прочности.

  • При резком понижении температуры воздуха страдает верхний залитый слой. Поверхность со временем облупляется из-за поднявшейся на самый верхний слой воды. Дело в том, что в этом случае водоцементное соотношение нарушается: внизу наблюдается недостаток влаги, а на поверхности излишек. При заморозках вода превращается в лед, что ведет к растрескиванию и повреждению конструкции.
  • Если температура понижается надолго, то бетон может окончательно разрушиться. Это связано с полной остановкой процесса гидратации. Даже после оттепели прочность уже не восстановится. Остается только применять дополнительные меры защиты во время заморозков.

Бетон замерз с противоморозными добавками

Если в раствор были добавлены дополнительные ингредиенты, но это не спасло ситуацию во время сильных заморозков, то наблюдаются такие последствия:

  • При использовании в бетонной смеси дополнительных добавок некоторые характеристики фундамента снижаются, что влияет на уменьшение прочности конструкции. Это ведет к растрескиванию не только верхнего слоя, но и середины, а также основания.
  • Из-за потери мощности бетонной конструкции возникает деформация.
  • Бетон становится более подвержен перепаду температур, чем если бы был без специальных противоморозных добавок. Это ведет к образованию щелей и отверстий в основании конструкции. При попадании в них влаги происходит постепенное разрушение.

С противоморозными добавками вероятность промерзания бетонного слоя не велика. Если это все же произошло, то сохранить целостность конструкции будет гораздо тяжелее.



Сколько нужно времени бетону, чтобы не замерзнуть

Вероятность замерзания бетона зависит от температуры воздуха во время заливки и во время набора прочности конструкции. Если работы проводятся при нормальных температурах, то для схватывания фундамента потребуется не менее 2 часов. Такое же время потребуется для затвердевания.

При отрицательных температурах воздуха бетон не набирает необходимой прочности. Если температура снижается, то схватывание поверхности не произойдет и возможно промерзание.

От типа используемой бетонной смеси и показателей влажности окружающей среды будет зависеть продолжительность затвердевания конструкции. При соблюдении технологических параметров работы полное затвердевание происходит уже через 27 — 30 дней. После этого срока не страшны заморозки. При неблагоприятных погодных условиях конструкция может замерзнуть даже спустя 2 месяца. После 3 — 4 месяцев схватывания морозы не страшны.

Вам приходилось заливать бетон в мороз?

Что делать, если замерз бетон

Если неожиданно ударил мороз и конструкция замерзла, то ее в первую очередь отогревают. Сделать это можно с помощью применения тепловых пушек, мощных электрических прожекторов или путем использования металлических бочек, внутри которых разводят костер. Делают это быстро с использованием нескольких емкостей.

Сразу после понижения температуры воздуха следует накрыть поверхность пленкой ПВХ. Такая мера позволит ликвидировать отдачу тепла от верхнего слоя и сохранить нормальную температуру на глубине фундамента.

Если перекрытие фундамента не нуждается в спасении, то достаточно будет сделать только утепление сверху, поместив на поверхность тепловую пушку. Снизу тепло будет поступать от земли, что и спасет всю конструкцию в целом.

Снижение температуры не страшно для затвердевшего бетона, но похолодание нарушает целостность поверхности. При замерзании бетона главное сразу начать работу по восстановлению. Промедление приводит к нежелательным последствиям, вплоть до серьезной деформации конструкции. Зная все тонкости условий бетонирования, можно добиться хороших результатов.

Популярное


Бетонные работы при низких температурах: все нюансы и правила

Построить дом, в котором будет собираться большая семья, чтобы вместе отметить праздники и радостные события – мечта любого мужчины. Как правило, у каждого хозяина, желающего построить свой дом, возникает множество вопросов, в которых он желает разобраться самостоятельно, не обращаясь к помощи специалистов. Это и самолюбие потешит и немало денег сэкономит. Однако большинство мужчин останавливает одна и та же проблема – решить, в какое время года строить дом. Раньше считалось, что это возможно только летом, но научный прогресс позволяет строить жилье и зимой. Единственный нюанс – стоит заранее выяснить, при какой температуре можно производить бетонные работы.

Преимущества и недостатки зимних работ

Бетонирование при отрицательных температурах имеет свои преимущества и изъяны, о которых нельзя забывать.

Свои преимущества имеет бетонирование при отрицательных температурах

Преимущества:

  1. Возможность залить бетон на сыпучем грунте. В тёплое время года почва осыпается, что затрудняет качественную укладку покрытия.
  2. Меньшая стоимость работ. Зимний период традиционно считается неподходящим для строительства, поэтому многие магазины делают скидки на материалы, необходимые для строительства дома.
  3. Ускоренное оказание услуг. Неприятная погода буквально заставляет сотрудников работать быстрее, что значительно снижает временные затраты.

Недостатки:

  1. При выборе рабочих следует рассматривать мастеров, которые способны выполнять заливку бетона зимой. Это связано с тем, что большинство строителей работают только летом.
  2. Велик риск того, что бетонная смесь замёрзнет, и строительные работы придётся приостановить до тех пор, пока температура внешней среды не достигнет положительных значений.
  3. Зимой световой день короче, чем летом, поэтому потребуется купить оборудование для дополнительного освещения. Как правило, это требует немалых растрат.
  4. Заливка фундамента на замёрзшую землю грозит проседанием и возникновением трещин, так как при размерзании земля проседает.

Как влияют на бетон отрицательные температуры?

Согласно п. 5.3.15. СП 70.13330.2012 СНиП 3.03.01-87, проведение укладки бетона при отрицательных температурах возможно только при создании особых условий, обеспечивающих необходимые свойства бетона.

Только при создании особых условий возможно заливка бетона при отрицательных температурах

Качество раствора при различных температурах

Укладка бетона при минусовой температуре приводит к появлению неисправимых изменений в структуре.

В связи с этим следует помнить об особенностях работы в зимнее время:

  • раствор, приготовленный в летний зной, имеет более высокую стойкость и быстрее застывает, чем смесь, приготовленная зимой;
  • при работе в ледяной холод качество раствора резко падает. Об этом свидетельствует видимая деформация изделия. Поэтому температура укладки бетона должна быть выше 0°C.

Физико-химические процессы

Созревание бетона при низких температурах занимает большее количество времени и рискованно появлением дефектов на готовой конструкции. Самой низкой температурой для естественного протекания процесса считается +4 °C.

Гидратация бетона при отрицательных температурах замедляется, химически несвязанная вода переходит в состояние льда, увеличивая свой объём на 9,7 %. Из-за этого в смеси возникают напряжения, которые разрушают его структуру. Замёрзший бетон обретает высокую прочность благодаря сцеплению молекул замёрзшей воды, но это ненадолго.

При увеличении температуры внешнего мира выше 0 градусов, вода начнёт оттаивать, что возобновит гидратацию. Но изменение структуры бетона не позволит набрать необходимую проектную прочность. Исследования показывают, что влияние пониженной температуры не меняет физико-химические характеристики бетона, если до замерзания смесь набрала 30-50% проектной прочности.

Большее количество времени занимает созревание бетона при низких температурах

Схватывание и твердение бетона при низких температурах по дням

Чтобы выяснить наиболее подходящее время для начала проведения строительных работ, следует обратить внимание на график, где показано твердение бетона при низких температурах. Каждый производитель строительного материала размещает таблицу с информацией о застывании бетона при низких температурах на упаковке. Лучшим временем считается момент, когда прочность бетона составляет не менее 72%. Чтобы лучше понимать, как рассчитать время работы, следует изучить пример, в котором описано схватывание бетона при низких температурах по дням.

Методы зимнего бетонирования

Если работа осуществляется при пониженной температуре, то следует заранее позаботиться о том, чтобы раствор не замерзал. Опытные строители выбрали несколько способов, которые позволяют выполнять производство бетонных работ при отрицательных температурах.

Повышение температуры в процессе замеса

Работа при показателях ртутного столбика ниже 0°C отличается своей спецификой. Прежде чем укладывать смесь, необходимо её нагреть до определённой температуры. Процедура направлена на повышение порога критической прочности бетона. Это величина, определяющая минимальную прочность, которую нужно набрать бетону до обморожения. Работа в холод повышает риск того, что разрушится структура бетона и его дальнейшее вызревание будет невозможно.

Подогрев и утепление раствора

Научные достижения предлагают немало различных методик, позволяющих добиться необходимой температуры.

Немало различных методик предлагают научные достижения

Среди наиболее популярных выделяют:

  1. Внутренний подогрев строительной конструкции. Изнутри перекрытия закладывают специальные провода. Это создаёт необходимые условия для застывания раствора.
  2. Обогрев смеси с внешней стороны. Повышают температуру окружающей среды на определённом участке строительных работ. Для успешного бетонирования используют тепловые пушки (строительные обогреватели) и разборные сооружения («тепляки»).
  3. Несъёмная теплоизоляционная опалубка. Такой метод применим, если температура внешнего мира будет не менее – 5°C. Эта система обеспечивает условия для твердения бетона с помощью требуемой температуры.

Использование противоморозных добавок

Опытные мастера вместе с подогревом раствора применяют противоморозные добавки.

Профессионалы утверждают, что это доступный и простой метод бетонирования при низких температурах. Составы делят на 2 группы:

  1. Тормозящие процесс кристаллизации воды. Составы содержат компоненты, которые обеспечивают полимеризацию раствора в холод.
  2. Ускоряющие затвердевание. Используя эти компоненты, строители сокращают время затвердевания бетона.

Как правило, противоморозные компоненты составляют 2-10% от цементной основы. Их использование делает возможным осуществление работы при температуре -25 °C.

Противоморозные добавки применяют для строительных работ зимой

Среди наиболее распространённых противоморозных добавок:

  • углекислый калий (поташ). Свою популярность этот компонент приобрел за счёт того, что не провоцирует образования ржавчины на металлических конструкциях. Процесс полимеризации продолжается даже при температуре -25 °C. Использование поташа гарантирует отсутствие соляных следов. Однако углекислый калий имеет свою особенность – смесь быстро схватывается. Так что рекомендуется использовать раствор не позже, чем через 50 минут с момента приготовления;
  • нитрит натрия. Этот модификатор даёт возможность проводить строительные работы при температуре до -19 °C, а также наделяет антикоррозийными свойствами. Однако использование этого компонента приводит к появлению солевых следов на готовом изделии;
  • хлорид кальция. Способствует застыванию бетона, даже если на улице -20 °C, а также увеличивает скорость схватывания смеси. В силу своей природы, состав может оставлять соляные разводы на застывшем бетоне.

Особенности заливки бетона при разных погодных условиях

Заливка бетона в жаркую погоду

Заливка бетона в палящий зной станет настоящим испытанием для тех, кто любит медлить.

Настоящим испытанием станет заливка бетона в палящий зной

Пол быстро затвердевает, поэтому необходимо придерживаться определённых правил:

  • обязательное использование гидроизоляции. Даже если она не требуется в силу погодных условий, её наличие не позволит влаге просачиваться в грунт;
  • большее количество сотрудников увеличит скорость выполнения работы и обеспечит качественное покрытие поверхности;
  • отделка плиты двумя способами – с алюминиевой тёркой и стальным предметом, обеспечит качественное покрытие;
  • чтобы получить немного дополнительного времени на выполнение работы, следует использовать более влажную смесь;
  • следует приступать к увлажнению плиты сразу после того, как затвердела обработанная поверхность.

Работа в прохладное время года

При работе в морозную погоду бетон твердеет медленно. Когда плита будет уложена, нужно выждать не менее часа, прежде чем приступить к ручной затирке.

В силу того, что выполнение этого этапа требует большей скорости, чем те же самые действия в жаркий день, то необходимо следовать некоторым советам:

  • не стоит увлажнять бетон больше, чем необходимо;
  • если погодные условия не требуют использования полиэтиленовой гидроизоляции, стоит дать возможность влаге выйти в грунт. Это ускорит затвердевание бетона;
  • следует заполнять участок смесью как можно раньше, это обеспечит более быструю готовность работы, так как днём температура воздуха более высокая, соответственно, смесь застывает быстрее.
Медленно твердеет бетон при работе в морозную погоду

Заливка бетона в холодную погоду

Заливка бетона при отрицательных температурах требует создания особых условий. Раствор не должен замерзать, иначе тонко отшлифованная поверхность плиты станет кашеобразной.

Чтобы обеспечить наиболее качественное покрытие при выполнении работ в холодную погоду, требуется запомнить некоторые особенности:

  • следует попросить поставщика, чтобы он смешивал раствор тёплой водой в те дни, когда температура ниже точки замерзания. Это помогает избежать проблем при транспортировке смеси;
  • добавление в состав смеси негашёной извести ускоряет первоначальное затвердевание бетона и позволит более стойко сопротивляться разрушающим факторам при оттаивании или замораживании. Количество извести обычно составляет 0,5 – 2% от массы смеси;
  • важно помнить о том, что использование большого количества смеси также проблематично, как и работа в жаркую погоду. Добавление извести делает состав агрессивным по отношению к стали, этот компонент нельзя использовать при работе с бетоном, усиленном стальными конструкциями;
  • следует убедиться в том, что подушка из щебня не замёрзла;
  • необходимо обеспечить дополнительный обогрев здания, в котором ведутся работы;
  • покрыть готовую плиту полиэтиленом и накрыть слоем сена или соломы, толщиной более 100 мм, чтобы обеспечить теплоизоляцию.

Рекомендации при зимнем бетонировании

В силу своего химического состава, бетон при минусовой температуре не способен сохранить хорошее качество.

При желании совершить укладку смеси в холод, следует придерживаться некоторых правил:

  • необходимо подготовить вспомогательные конструкции. Требуется очистить опалубку от льда и осадков и разогреть арматурные конструкции и дно до достижения требуемой температуры. Для этого потребуются обогревательные элементы;
  • использование плиточного фундамента. Это делает невозможным поддержание необходимой температуры в ледяной холод. Опытные строители заливают такой тип основания только при показателях ртутного столба выше 0°C или небольших заморозках;
  • применение ленточного фундамента в качестве основания. В силу возможности поэтапного выполнения работы, такой вариант наиболее приемлем для возведения жилья в холодную погоду. Лучше создавать обогревательные комплексы для застывания бетона на определённых участках;
  • непрерывность работы. Если фундамент необходимо заливать частями, каждую последующую локацию необходимо заполнить до того, как схватиться первая;
  • совмещение методов. Практика показывает, что лучшего результата удаётся достичь при использовании нескольких методов зимнего бетонирования.

Даже несмотря на всю доступность стройки в морозное время года, необходимо помнить о том, что это влечёт за собой лишние затраты времени, денег и сил. Поэтому лучше заливать бетон в тёплое время года.

Виды расчетов и экспериментальных исследований

Состояние окружающей среды влияет на свойства строительных материалов. Это исследование дает начальное представление о гидратации портландцемента при низких температурах с точки зрения лабораторных экспериментов (включая электрическое сопротивление, степень гидратации (DoH) и зрелость), а также термодинамических расчетов. Гидраты портландцемента в данный период были обнаружены с помощью дифракции рентгеновских лучей (XRD), а их микроструктура наблюдалась с помощью сканирующего электронного микроскопа (SEM).Результат эксперимента (т.е. DoH и удельное электрическое сопротивление) показал, что гидратация портландцемента задерживалась низкой температурой без остановки гидратации при -5 ° C. Основываясь на базовой кинетической модели, термодинамический расчет предсказал, что конечный гидрат отличается в зависимости от температуры окружающей среды. Тенденция механического поведения портландцементной пасты под воздействием низких температур потенциально связана с появлением алюминатных соединений и восстановлением портландита.

1.Введение

Температура влияет на характеристики портландцемента, который является наиболее широко используемым материалом в строительстве инфраструктуры [1]. Между тем, матрица цементного вяжущего играет очень важную роль в композитах на основе портландцемента (т.е. пастах, растворах, бетоне, стабилизированном камне и обработанных грунтах). Характеристики затвердевшего портландцемента (например, механическое поведение и долговечность) тесно связаны с химической гидратацией и твердением в раннем возрасте, в то время как взаимосвязь между процессами гидратации, производимыми гидратами, микроструктурами и механическими характеристиками была доказана в предыдущих исследованиях [2– 5].В течение срока службы инфраструктуры материалы на основе цемента должны сталкиваться с жесткими условиями окружающей среды, такими как сверхнизкие температуры [6–8]. В этих условиях механические свойства (например, прочность на сжатие, прочность на изгиб, модуль упругости и коэффициент Пуассона) затвердевшего портландцементного бетона будут улучшены за счет сверхнизкой температуры, например, –70 ~ –10 ° C [7].

Иными словами, если материалы на основе цемента (пасты, растворы, бетон и т. Д.) Будут подвергаться воздействию низких температур, особенно отрицательной температуры (<0 ° C) во время начальной стадии гидратации, гидратация цемента будет сильно затронута [9–11] .В этом случае гидратированные продукты, фазовая конверсия, например, из эттрингита (AFt) в моносульфат (AFm), и поры раствора будут подвергаться воздействию низких температур [5, 12]. В некоторых ограниченных условиях матрица может быть даже повреждена. Таким образом, в раннем возрасте следует применять стратегии, чтобы избежать повреждения матрикса в холодную погоду [13, 14]. С этой целью было проведено множество исследований по изучению гидратации портландцемента при низких температурах [10, 11, 15–18], хотя до сих пор отсутствует глубокое понимание влияния низких температур на характеристики гидратации и твердения цемента. .

Лучшее понимание гидратации портландцемента может абсолютно улучшить характеристики цементных композитов при низких температурах, особенно для применения в холодном климате. Таким образом, это исследование направлено на изучение процесса гидратации портландцемента, включая гидраты, микроструктуры и эволюцию механического поведения. Чтобы лучше понять влияние низких температур на процесс гидратации, также используется термодинамический подход для расчета гидратов портландцементной пасты.По сути, это исследование дает базовые знания о процессе гидратации портландцемента при низких температурах как часть систематического исследования.

2. Экспериментальная программа
2.1. Сырье

В данном исследовании использовался типичный коммерческий обыкновенный портландцемент (OPC, производимый Jidong Cement Plant, Сиань, Китай) с оксидными компонентами, подробно описанными в Таблице 1 (PO42.5). Следует отметить, что оксидные компоненты, измеренные здесь с помощью XRF, не отражали реальный компонент в портландцементе из-за замены 5 ~ 10% наполнителя в клинкерах.Минеральные фазы в OPC (с помощью XRD) и гранулометрический состав показаны на рисунке 1. Технические свойства PO42.5, использованного в этом исследовании (предоставлены производителем), следующие: удельная поверхность (по Блейну) = 360 м 2. 2 / кг, плотность = 3,02 г / см 3 , время начального схватывания = 2,8 часа и время окончательного схватывания = 4,7 часа.


Оксид Na 2 O MgO Al 2 O 3 SiO 2 P 2 O 5 SO 3 K 2 O CaO TiO 2 MnO Fe 2 O 3 CuO ZnO Rb 2 O SrO BaO PbO Cr 2 O 3

PO42.5 0,30 1,30 5,20 18,00 0,05 3,00 1,10 65,80 0,40 0,07 4,80 0,02 0,10 0,00 0,09 0,0 0,02 0,00

, полученные методом рентгеновской флуоресценции (XRF).

2.2. Методы и инструменты
2.2.1. Лабораторные эксперименты

Цементные пасты смешивали в соответствии с ASTM C305-14 [20], а затем помещали в формы (40 × 40 × 160 мм) или пластиковые контейнеры; после этого они были отверждены в камерах при -5 ° C, 0 ° C, 5 ° C, 8 ° C и 20 ° C (относительная влажность = 90%). Следует отметить, что перед смешиванием сырья (например, портландцемента и воды) формы и чаши следует предварительно охладить в камерах, соответствующих температуре их последующего отверждения. Например, если образец пасты будет отверждаться при 0 ° C, воду, цемент, чаши и формы следует предварительно охладить при температуре 0 ° C в течение двух часов, пока их поверхность не достигнет 0 ° C.В экспериментальном исследовании водоцементное (в / ц) отношение образцов призм для измерения прочности было установлено равным 0,45, в то время как в / ц пасты, хранящейся в герметичных пластиковых контейнерах, было задано равным 0,5 для завершения реакции.

Пасты в контейнере обрабатывали в соответствии с методом замены растворителя (изопропанолом) [21], а затем измеряли с помощью XRD (Bruker, D8 Advanced, Cu-K α ) и SEM (Hitachi, S4800).

Чтобы описать процесс гидратации портландцементных паст, в этом исследовании были измерены степень гидратации (DoH), зрелость и удельное электрическое сопротивление.DoH паст портландцемента был определен как (1) на основе модели Пауэрса [22]. Где DoH - степень гидратации (% по весу), - начальная масса образца, предварительно обработанного в муфельной печи (6 часов) при 105 °. C, - конечная масса образца, нагретого до 950 ° C.

Удельное электрическое сопротивление цементного теста может быть использовано для анализа процесса гидратации цемента [19]. Таким образом, кривая удельного сопротивления во время начальной гидратации портландцемента была обнаружена с помощью CCR-II (производства BC Tech, г. Шэньчжэнь, Китай).Оборудование и образец показаны на рис. 2. Чтобы предотвратить испарение влаги и колебания температуры, на тестовой плате была установлена ​​пластиковая крышка, а температура контролировалась кондиционером (общая температура) или камерой (более низкие температуры).


Зрелость была рассчитана по следующему уравнению [10, 11, 23]: где - зрелость портландцементной пасты, - температура образца (° C), измеренная CCR-II (подробно описанная выше), или температура отверждения. (-5 ° C, 0 ° C, 5 ° C, 8 ° C и 20 ° C) - это базовая температура (обычно -10 ° C) и временной интервал на стадии отверждения (h).

2.2.2. Термодинамический расчет

Критерии минимизации свободной энергии Гиббса использовались для расчета равновесных фазовых ассоциаций и ионного состава химических систем, таких как паста портландцемента. Моделирование и программное обеспечение были подробно описаны в нашем предыдущем исследовании [18], в котором GEMS-PSI (программное обеспечение) и CEMDATA7.1 (база данных) использовались для расчета гидратов OPC. Следует отметить, что в этом исследовании основная кинетическая функция [24] гидратации портландцемента была модифицирована константой равновесия раствора [18, 25].В термодинамическом моделировании входные данные включали следующее: C 2 S = 11,1 г / 100 г, C 3 S = 62,9 г / 100 г, C 3 A = 6,0 г / 100 г, C 4 AF = 11,5 г / 100 г, гипс = 4,6 г / 100 г, K 2 O = 1,1 г / 100 г и Na 2 O = 0,3 г / 100 г. Кроме того, 10000 дней были адаптированы как окончательный срок гидратации в моделировании. Теоретический расчет термодинамики может дать более глубокое объяснение механического поведения.

3. Результаты и обсуждение
3.1. Электрическое сопротивление в раннем возрасте

На рисунке 3 показана кривая удельного сопротивления портландцемента во время гидратации. После смешивания с водой ионы (например, Ca 2+ , K + , Na + , OH - и) растворяются в воде, образуя электролитический раствор [26], и затем гидраты будут расходуют ионы в растворе или занимают пространство раствора; таким образом, удельное сопротивление пасты можно использовать для наблюдения за стадиями гидратации во время гидратации.Сообщается, что гидратацию цемента можно разделить на пять стадий: (1) стадия растворения; (2) этап динамического равновесия; (3) этап настройки; (4) стадия закалки; 5) стадия замедления твердения [19]. Основываясь на предыдущем исследовании [19], кривая удельного сопротивления и дифференциального удельного сопротивления может хорошо указать начальное и окончательное время схватывания. На рисунке 3 нормализованные данные удельного сопротивления показывают очевидное дно, которое соответствует началу начальной настройки. Кроме того, начальное положение стадии замедления упрочнения может быть подтверждено в верхней части кривой дифференциального электрического сопротивления.Кривые на рисунке 3 показывают, что данные о температуре и удельном сопротивлении хорошо согласуются друг с другом. Следовательно, данные о температуре при измерении CCR-II также можно рассматривать для описания гидратации цемента. Этот вывод является основой для адаптации температурных данных образца при расчете зрелости ниже.


На рисунке 4 представлены нормированные данные удельного сопротивления портландцементных паст при температуре ниже 8 ° C (рисунок 4 (a)) и 20 ° C (рисунок 4 (b)). На кривых можно отметить две важные характеристики: (i) низкая температура (8 ° C) задерживает нижнюю часть (начальное положение времени схватывания) нормализованной кривой удельного сопротивления; (ii) начальный график нормализованной кривой удельного сопротивления при низкой температуре (8 ° C) был ниже, чем при общих условиях (20 ° C).Они связаны с тем, что скорость химической реакции снижается при низких температурах.


(а) 8 ° C
(б) Комнатная температура
(а) 8 ° C
(б) Комнатная температура
3.2. Температура образца и проявление зрелости

Изменение температуры также регистрировалось датчиками (см. Рисунок 2 (b)), как показано на рисунке 4. При более низкой температуре отверждения (8 ° C) температура образца увеличивалась из-за химической реакции в пасте и затем уменьшилось из-за более прохладной окружающей среды снаружи.При комнатной температуре температура образца продолжала расти, при этом температура образца в меньшей степени зависела от удельного электрического сопротивления пасты.

На рис. 5 показана зрелость, рассчитанная на основе температуры отверждения / образца с помощью (2). Рисунок 5 (а) представляет собой идеальную кривую зрелости, рассчитанную по температуре отверждения, в то время как Рисунок 5 (b) показывает зрелость, рассчитанную по температуре образца (см. (2)). Считается, что механическое поведение композитов на цементной основе сильно зависит от зрелости [10].В этом смысле рис. 5 может служить доказательством задержки силы в предыдущих исследованиях [17, 18].


(a) Температура окружающей среды
(b) Температура образца
(a) Температура окружающей среды
(b) Температура образца
3.3. Степень гидратации

Степень гидратации (DoH) зависит от процесса реакции цементного теста; следовательно, DoH цементного теста, отвержденного при более низких температурах, был измерен на основе модели Пауэрса и показан на Рисунке 6.По истечении времени отверждения DoH цемента с той же температурой отверждения увеличивается, тогда как более высокая скорость гидратации достигается при более высоких температурах. Возьмем, к примеру, -5 ° C, его DoH после 90 дней составлял 63,2%, что намного ниже, чем у обычного состояния (91,9% при 20 ° C). Этот результат согласуется с выводом отчета FHWA [23]. Между тем, эксперимент показывает, что портландцемент все еще может гидратироваться при -5 ° C; например, DoH для OPC при -5 ° C составляли 16,7%, 25,5%, 47,4%, 55,3%, 61,9% и 63,2% после 1, 3, 7, 28, 60 и 90 дней соответственно.Этот результат объясняет медленное достижение прочности цементных паст при отрицательных температурах.


3.4. XRD-анализ

На рис. 7 показан XRD-анализ гидратов портландцемента при различных температурах (1 d). Видно, что пик портландита (Ca (OH) 2 ) отличается температурой отверждения. До -5 ° C не было явного пика портландита, и отчетливо прослеживалась минеральная фаза (1 г). Не было пиков AFt через 1 день для паст, отвержденных при температуре -5, 0, 5 и 8 ° C.


3.5. SEM

Микроструктура гидратированной пасты представлена ​​на Рисунке 8. Согласно DoH, приведенному выше, портландцемент меньше гидратировался при температуре ниже –5 ° C; таким образом, разделенные частицы на Фигуре 8 (а) могут быть объяснены тем, что твердое вещество не связывается с другими. При других температурах затвердевание паст зависело от температуры отверждения. Если сосредоточить внимание на гидратах, на рисунке 8 (b) (0 ° C) было несколько отдельных частиц, а на рисунке 8 (c) (5 ° C) было немного негидратированных частиц.Если температура отверждения была выше 8 ° C, на изображениях SEM можно было наблюдать меньше негидратированных частиц (см. Рисунки 8 (d) и 8 (e)). Принимая во внимание DoH (47,4%) портландцемента, отвержденного при -5 ° C за 7 дней, цемент должен образовывать некоторое количество гидратов для связывания частиц в пасте; однако DoH этого образца (-5 ° C, 7 дней) был точно таким же, как у образца, отвержденного при 20 ° C за 1 день (46,7%, см. рисунок 4). На этом уровне DoH частицы в пасте не реагировали на связывание с другими. Фактически, портландцемент только что завершил межфазную реакцию и достиг гидратации, контролируемой диффузией [27] на этом уровне DoH, в то время как промежутки между частицами не были заполнены гидратами.При увеличении DoH (т.е. связанном с температурой) промежутки между гидратами будут заполняться, а затем связываться друг с другом. Здесь не следует игнорировать еще одну причину, по которой частицы цементного теста перемещались и разделялись льдом, образовавшимся при -5 ° C (отрицательные температуры).

4. Термодинамический расчет гидратации портландцемента при низкой температуре
4.1. Гидратация портландцемента в течение времени отверждения

Термодинамический расчет гидратации портландцемента был подтвержден рядом исследований.На рисунке 9 показано выделение гидратов при 20 ° C на основе термодинамического моделирования. Как показано на рисунке, гидраты увеличиваются со временем отверждения. Aft была преобразована в AFm через 1 день, а затем исчезла через 2 дня, а фаза C 3 AH 6 появилась через 3 дня. Этот результат расчета подтвержден нашими экспериментальными данными, поскольку о низкотемпературных эффектах сообщалось ранее. Конечные гидраты могут быть изменены в пределах 0 ~ 10 ° C. Изменение минеральной фазы можно увидеть на Рисунке 10.



4.2. Взаимосвязь между прочностью, гидратами и температурой

Механическое поведение цементного теста в значительной степени связано с его гидратами. Например, связь между механическим поведением и содержанием CSH была доказана в нашем предыдущем исследовании [17]. На рисунке 10 показаны зависимости между температурой отверждения, прочностью на сжатие и объемной долей гидратов. Фракции гидратов были собраны из термодинамических расчетов (возраст = 10000 дней).

Прочность измерялась при температурах 0, 5, 8 и 20 ° C и более 3 дней, 7 дней и 28 дней. Можно видеть, что (1) содержание CSH не подвергалось значительному влиянию температуры отверждения сверх долгих сроков; (2) объемные доли AFt, AFm и портландита изменялись в зависимости от температуры отверждения; (3) длительная (28 дней) прочность показала слабую связь с содержанием CSH, но была сильно связана с AFt, AFm и портландитом при температуре 10 ° C. С уменьшением СН увеличивалась прочность на сжатие.Кроме того, AFm может улучшить механическую прочность портландцемента при низких температурах.

Это открытие было очень интересным, потому что мы всегда думали, что механическое поведение тесно связано с объемной долей CSH, но в этом исследовании, исходя из предпосылки различных температур раннего отверждения, мы обнаружили, что изменение механической прочности не имеет отношения к содержанию CSH. (прочность отличается при одинаковой / той же объемной доле CSH), но существенно связана с производимыми алюминатными гидратами и портландитом.Следует отметить, что приведенный выше вывод может быть не на 100% правильным, но мы хотели бы считать, что влияние температуры на раннее механическое поведение должно иметь более глубокие объяснения с точки зрения термодинамики. Однако в будущем эти выводы потребуют дополнительных доказательств.

5. Резюме и выводы

Характеристики гидратации портландцемента (PO42.5) в раннем возрасте, включая электрическое сопротивление, изменение температуры, степень гидратации и фазовое развитие, наблюдались в лаборатории при температуре отверждения -5,0, 5, 8 и 20 ° C.Термодинамический расчет на основе программного обеспечения GEMS-PSI также использовался для объяснения и проверки экспериментальных результатов. Выводы можно сделать следующие:

.

Температура и относительная влажность: что они значат для вас и ваших бетонных столешниц

Сушка - это важный процесс, которым необходимо управлять и понимать, чтобы избежать проблем. В некоторых случаях следует избегать высыхания, а в другое время - необходимо. Понимание того, как работают вместе температура, точка росы и уровни влажности, прольет свет на то, как управлять сушкой.

Бетон должен оставаться влажным, чтобы он затвердел. Но некоторым герметикам требуется, чтобы бетон был сухим, чтобы они застыли и правильно приклеились.Это хрупкий баланс. Уровни температуры и влажности играют важную роль в том, будет ли ваш бетон или герметик затвердеть должным образом, или прекратится ли затвердевание вашего бетона, появятся трещины карты (или что еще хуже), или если у вашего герметика есть проблемы со сцеплением и отверждением.

Как известно, в жарких условиях вещи быстро сохнут. Поэтому в летние месяцы (а для некоторых из нас уже наступили летние температуры) очень важно следить за тем, чтобы голый, открытый бетон, который все еще застывает, оставался влажным .С другой стороны, из-за низких температур сушить вещи труднее. Холодный бетон высыхает намного дольше, потому что вода не испаряется так быстро.

Я опишу, как на сушку влияют температура и относительная влажность, и опишу, что такое точка росы и как она связана с относительной влажностью.

Сушка также известна как испарение. Скорость испарения воды зависит от нескольких факторов, включая температуру, относительную влажность и расход воздуха.Вода испаряется очень быстро под воздействием горячего, сухого, быстро движущегося воздуха. И наоборот, вода испаряется очень медленно, когда она находится в холодном влажном неподвижном воздухе.

Температура описывает, сколько энергии доступно для испарения. В теплый день может испариться больше воды, потому что для испарения доступно больше тепловой энергии. Напротив, вода имеет меньше доступной тепловой энергии для испарения, когда она холодная. Следовательно, в холодном состоянии сушка значительно замедляется.

Относительная влажность важна, потому что чем больше влаги уже содержится в воздухе, тем ниже скорость испарения воды и тем меньше влаги может удерживать воздух.
Относительная влажность - это мера текущего количества водяного пара в воздухе по отношению к общему количеству водяного пара, которое может существовать в воздухе при его текущей температуре, и выражается в процентах.

Относительная влажность 100% означает, что воздух не может больше содержать водяной пар при этой температуре, тогда как относительная влажность 50% означает, что воздух содержит только половину того количества водяного пара, которое он может удерживать при текущей температуре.

Точка росы - это температура воздуха, при которой воздух насыщается водяным паром. Теплый воздух может «удерживать» больше воды, чем холодный. Когда воздух определенной температуры не может больше удерживать воду, он полностью насыщается и имеет 100% относительную влажность. Воздух не задерживает водяной пар. На самом деле описывается температура, при которой уровень водяного пара достигает точки насыщения.

Расход воздуха важен, потому что по мере испарения воды слой воздуха над водой (или влажным бетоном) постепенно становится более насыщенным водяным паром.Когда уровень испаренной влаги достигает насыщения, сушка практически прекращается. Воздушный поток увеличивает скорость испарения, «смывая» застойный влажный воздух над бетоном.
На следующем графике показано соотношение между температурой воздуха, температурой точки росы и относительной влажностью.

Moist Curing
Бетон должен оставаться влажным, чтобы он затвердел. Как правило, для гидратации внутренняя относительная влажность должна быть выше 80-85%.

Смачивание поверхности голого бетона создает водяной барьер, который предотвращает вытягивание влаги из бетона при испарении поверхностной влаги. Пленка воды на поверхности представляет собой относительно большой резервуар, который может испаряться, не влияя на содержание влаги в порах бетона. Вода на бетоне действует как буфер.

Когда бетон покрыт пластиком, воздух, находящийся под пластиком, быстро насыщается водяным паром.Когда это происходит, сушка практически прекращается.

Когда бетон высыхает, силы всасывания, возникающие при испарении воды из пор в бетоне, могут фактически раздавить слабое цементное тесто. Чем дольше бетон остается влажным, тем выше его прочность и сопротивление всасывающим силам. Это означает меньше трещин и меньше усадки и скручивания. Более длительное влажное отверждение также уменьшает размер пор, что означает, что меньше влаги испаряется и влаге труднее выходит из бетона.

Сушка
Некоторым герметикам требуется, чтобы бетон был сухим, чтобы он хорошо прилипал. А некоторые герметики не будут отверждаться должным образом, если в бетоне слишком много влаги.

Температура и относительная влажность являются важными факторами, на которые следует обращать внимание, чтобы ваш бетон высыхал до нужной вам степени, чтобы важнейший герметик работал так, как вы и ваш клиент ожидаете.

Если в вашем цехе холодно (например, в большинстве магазинов зимой), скорость испарения ниже, а также потому, что в большинстве магазинов есть открытые источники воды (траншеи, участки для мокрого шлифования и т. Д.), относительная влажность, как правило, выше, чем на улице. Они ограничивают степень высыхания. Если в вашем магазине относительная влажность 100%, не имеет значения, как долго вы «сушите» бетон. Он не теряет влагу и не высыхает, потому что воздух, окружающий бетон, больше не может удерживать влагу.

Помните: мокрый бетон не высыхает в небольших холодных цехах при неподвижном воздухе. Горячие цеха с движущимся воздухом с низкой относительной влажностью вызовут быстрое высыхание.

Счастливого бетонирования!

.

Как делается бетон (новое исследование) - Цементный бетон

Как производится бетон: - Бетон представляет собой жидкую смесь цемента, воды, песка и гравия . Бетон можно заливать в формы или формы, и он затвердеет, чтобы создать необходимые компоненты бетонной конструкции. Вам интересно узнать о микроструктуре бетона? Вот Новое исследование по микроструктуре бетона.

Химическая реакция и гидратация

схватывание и твердение бетона вызвано химической реакцией между портландцементом и водой, это можно продемонстрировать, добавив небольшое количество цемента в воду, содержащую индикатор, быстрое развитие синего цвета отражает выделение гидроксила. Ионы из растворяющегося цемента химическая реакция между цементом и водой называется гидратацией.

Связанные: - Высокопрочные свойства бетона, прочность, добавки и состав смеси

Рис.1. Состав бетона

Растворение цемента увеличивает уровни кальция и кремния в растворе, когда концентрация растворенных веществ достигает критических уровней, в результате реакции осаждения образуются новые твердые продукты. Это эскиз зерен цемента, взвешенных в воде.

Твердые продукты Hydration образуют покрытия вокруг частиц цемента и постепенно заполняют пространство между ними, когда покрытия впервые начинают схватываться, происходит устойчивое увеличение прочности по мере того, как покрытия срастаются вместе, величина прочности, достигаемая за счет смесь цемента и воды зависит от того, насколько эффективно заполнено пространство между зернами.

Бетон затвердеет в течение нескольких часов, , но гидратация продолжается в течение недель, даже лет после укладки. Вот изображение частиц цемента до воздействия воды. Сухой цемент представляет собой мелкодисперсный порошок, и частицы не прикрепляются друг к другу после того, как цемент смешан с водой и оставлен стоять.

Сейчас картина совсем другая, частицы сгруппированы вместе и прикреплены твердым материалом, обеспечивающим структурную целостность.Ученые из Национального института стандартов и технологий научились моделировать гидратацию цемента на компьютере с помощью компьютерного моделирования.

Гидратация ускоряется за несколько минут, а не дней до гидратации. Моделирование частиц цемента размещаются на дисплее компьютера, компьютер определяет области частиц, которые могут растворяться в воде.

Кусочки растворенного цемента случайным образом диффундируют в воде и реагируют с образованием твердых фаз.Согласно определенным правилам после завершения цикла , растворения, диффузии и осаждения , компьютер переходит к другому циклу, поскольку этот процесс повторяется снова и снова.


Микроструктура бетона

Микроструктура создает мосты между частицами, которые придают материалу прочность. Компьютерное моделирование оказалось ценным, поскольку позволяет исследователям проверять условия и проводить измерения, которые трудно достичь в реальной жизни.В конце моделирования гидратации структура затвердевшего цементного теста очень похожа на ту, что наблюдается под микроскопом.

Гидратация - это экзотермический процесс, при котором в результате химических реакций выделяется тепло, за процессом гидратации можно легко следить, отслеживая выделение тепла, которое сопровождает реакции,

это делается путем отхаркивания раствора из партии бетона и его взвешивания в бутылку, которая помещается в изотермический контейнер, термистор встраивается в свежий раствор , выходной сигнал термистора можно регистрировать с помощью На компьютере результаты этого эксперимента можно представить в виде кривой зависимости температуры от времени .

Подробнее : Производство портландцемента - процесс и материалы

Площадь под основным пиком может быть связана с ранним развитием прочности, начальное растворение цемента Purdue - это кратковременное выделение тепла, показанное первым пиком на калориметрической кривой.

После того, как продукты гидратации начального растворения быстро осаждаются на поверхности каждой частицы цемента, слой действует как защитный барьер и временно задерживает дальнейшее растворение частицы, что замедляет реакцию на несколько часов и называется период покоя.

Существование периода покоя позволяет транспортировать бетон на строительную площадку, укладывать и обрабатывать формы, конец периода покоя представляет собой начало схватывания, после чего цемент снова начинает реагировать. быстро с водой, поскольку образуются новые продукты гидратации.

Ученые используют измерения других свойств для контроля схватывания и твердения бетона, исследователям часто необходимо знать, какая часть цемента гидратирована.


Степень гидратации

Степень гидратации можно оценить путем нагревания образца цементного теста и измерения потери веса в зависимости от температуры с использованием оборудования для термогравиметрического анализа , свободная вода в образце удаляется путем нагревания до 105 градусов Цельсия при 105 градусах . Образец сухой, но сохраняет свою прочность.

Вода, участвующая в реакциях гидратации, химически соединяется с цементом. Ее можно удалить из образца путем нагревания до 1000 градусов при 1000 градусов всей исходной смеси.вода была удалена из образца. Степень гидратации рассчитывается по весу химически объединенной воды, типичное цементное тесто, отвержденное во влажных условиях, достигает степени гидратации около 80% за 28 дней с,

Электрические свойства образцов цемента или раствора можно отслеживать с течением времени, что приводит к профилям изменений электрического сопротивления. Электрические свойства этого образца цемента измеряются с помощью двух металлических дорог и оборудования, которое измеряет сопротивление и импеданс.

На этой диаграмме показано, как сопротивление электричества через цемент увеличивается по мере того, как цемент гидратируется в раннем возрасте, вода легко проводит ток через образец, но когда продукты гидратации заполняют открытые пространства внутри образца, электрический ток не может проходить так же легко, в этом случае Таким образом, электрические свойства могут быть связаны со степенью гидратации.

Сопротивление и импеданс цемента - это тема исследований, которые когда-нибудь могут изменить методы испытаний свежего бетона в полевых условиях.Текучие свойства бетона очень важны в этой области, потому что качественное строительство требует соответствующего уплотнения.

Стандартное испытание на осадку обеспечивает грубую оценку удобоукладываемости бетона, это испытание широко используется, потому что его легко проводить в полевых условиях, свойства жидкости также являются предметом исследования в лаборатории из-за потока изменений цемента по мере гидратации. Такие свойства, как вязкость и начальное сопротивление потоку, используются для характеристики жидких материалов.

Вода - это жидкость с низкой вязкостью и низким начальным сопротивлением текучести, но бетонный раствор и свежий цементный клей имеют гораздо более высокую вязкость, чем вода.

Вибрация часто используется для преодоления этого сопротивления в бетоне в лаборатории, жидкие свойства цементного теста можно измерить с помощью этого реометра Brookfield , исследователи используют более крупное оборудование, такое как реометр Tattersall, для измерения свойств раствора и бетона.


Реологическое оборудование т может использоваться для измерения начального сопротивления потоку, которое во время схватывания называется пределом текучести.Предел текучести начинает увеличиваться, и способность к течению теряется, исследователи заинтересованы в характеристиках текучести, чтобы понять, как процесс гидратации увеличивает жесткость свежего бетона и приводит к его затвердеванию.

Скорость гидратации можно контролировать несколькими способами, такими как температура, тип цемента и примеси . влияет на скорость, одной из наиболее важных переменных является температура окружающей среды, высокие температуры ускоряют гидратацию, так что схватывание также происходит быстрее. как последующее развитие силы.

Обратное происходит, когда температура понижается, хорошее практическое правило состоит в том, что на каждые 10 градусов Цельсия изменение температуры скорость гидратации изменяется в два раза, например, повышение температуры с 20 градусов Цельсия до 30. градусов Цельсия удваивает скорость увлажнения , важно помнить, что когда погода становится более прохладной, бетон медленно затвердевает и его необходимо хранить в формах в течение более длительного периода времени.

Гидратацию бетона также можно контролировать, используя различные типы цемента для противодействия влиянию высоких или низких температур в полевых условиях, например, использование 3 типов цемента противодействует холоду, поскольку они быстрее гидратируются, также есть специальные химические вещества. которые регулируют гидратацию, могут быть добавлены в бетон, чтобы ускорить процесс гидратации.

Установить замедлители гидратации этих материалов широко доступны.

Таким образом, гидратация - это химическая реакция между цементом и водой, которая связывает частицы цемента и заполнитель в бетоне в прочную структуру, и во время массирования одним из важных преимуществ бетона перед другими строительными материалами является то, что он смешивается. и формируется на месте и может принимать очень больших и гибких. Способность бетона быстро набирать прочность делает его ценным материалом для дорог, зданий, мостов и других важных сооружений .

Вам также понравится:

(Посещали 1570 раз, сегодня 5 посещений)

Продолжить чтение

.

ЗЕЛЕНАЯ КРОВЛЯ - ШАГ К УСТОЙЧИВОМУ РАЗВИТИЮ

Зеленая крыша - это крыша здания, частично или полностью покрытая растительностью и питательной средой, засаженная поверх гидроизоляционной мембраны. Он также может включать в себя дополнительные слои, такие как корневой барьер и системы дренажа и орошения. (Использование «зеленого» относится к растущей тенденции защиты окружающей среды и не относится к крышам, которые просто окрашены в зеленый цвет, как зеленая черепица или кровельная черепица.)

Контейнерные сады на крышах, где растения содержатся в горшках, обычно не считаются настоящими зелеными крышами, хотя это предмет дискуссий. Пруды на крышах - еще одна форма зеленых крыш, которые используются для очистки серой воды.

Зеленые крыши, также известные как « живых крыш », служат нескольким целям здания, например, поглощают дождевую воду, обеспечивают изоляцию, создают среду обитания для диких животных и помогают снизить температуру городского воздуха и бороться с эффектом острова тепла.

Есть два типа зеленых крыш: интенсивные крыши, которые толще и могут поддерживать более широкий спектр растений, но тяжелее и требуют большего ухода, и обширные крыши, которые покрыты легким слоем растительности и легче, чем интенсивные. зеленая крыша.

Термин зеленая крыша может также использоваться для обозначения крыш, которые используют некоторую форму «зеленой» технологии, например, холодную крышу, крышу с солнечными тепловыми коллекторами или фотоэлектрическими модулями Зеленые крыши также называют эко-кровлями , oikosteges , кровли с растительностью , живые крыши и зеленые крыши .

Рисунок: Поперечное сечение зеленой крыши

Инжир. Традиционные дерновые крыши можно увидеть во многих местах Фарерских островов.

Рис: Зеленая крыша мэрии в Чикаго, штат Иллинойс.

Виды зеленых крыш

Инжир: Интенсивный сад на крыше в Манхэттене

Зеленые крыши можно разделить на интенсивные, «полуинтенсивные» или обширные, в зависимости от глубины засеваемой среды и объема необходимого ухода.Традиционные сады на крыше, которые требуют разумной глубины почвы для выращивания крупных растений или обычных газонов, считаются «интенсивными», потому что они трудоемки, требуют полива, подкормки и другого ухода.

Интенсивные крыши больше похожи на парк с легким доступом и могут включать все, от кухонных трав до кустарников и небольших деревьев. Напротив, «обширные» зеленые крыши спроектированы так, чтобы быть фактически самоподдерживающимися, и для них требуется лишь минимум обслуживания, возможно, раз в год прополка или внесение удобрений с медленным высвобождением для ускорения роста.

Доступ к обширным крышам обычно осуществляется только для обслуживания. Они могут быть установлены на очень тонком слое «почвы» (в большинстве случаев используются специально разработанные компосты): даже тонкий слой минеральной ваты, уложенный непосредственно на водонепроницаемую крышу, может выдержать посадку видов Sedum и мхов.

Еще одно важное различие - это скатные зеленые крыши и плоские зеленые крыши. Скатные дерновые крыши, традиционная черта многих скандинавских зданий, обычно имеют более простой дизайн, чем плоские зеленые крыши.Это связано с тем, что наклон крыши снижает риск проникновения воды через конструкцию крыши, что позволяет использовать меньше слоев гидроизоляции и дренажа.

Экологические преимущества:

Зеленые крыши используются для:

  • Уменьшите нагрев (добавив массу и значение термического сопротивления). Исследование, проведенное в 2005 году Брэдом Бассом из Университета Торонто, показало, что зеленые крыши также могут снизить потери тепла и потребление энергии в зимних условиях.
  • Снижение охлаждающей (за счет испарительного охлаждения) нагрузки здания на 50-90%
  • , особенно если он застеклен, чтобы действовать как террариум и пассивный резервуар солнечного тепла - концентрация зеленых крыш в городской зоне может даже снизить средние температуры в городе летом
  • Уменьшить сток ливневой воды
  • Создание естественной среды обитания
  • Фильтрация загрязняющих веществ и углекислого газа из воздуха, что помогает снизить уровень заболеваний, таких как астма.
  • Фильтрация загрязняющих веществ и тяжелых металлов из дождевой воды
  • Помогите утеплить здание для звукоизоляции; почва помогает блокировать низкие частоты, а растения блокируют более высокие частоты
  • При правильной установке многие живые крыши могут получить баллы LEED
  • Сельскохозяйственная площадь
Финансовые выгоды
  • Значительно увеличить срок службы кровли
  • Повышение стоимости недвижимости

Зеленая крыша часто является ключевым компонентом автономного здания.

С 1970-х годов в Германии было проведено несколько исследований. Берлин - один из важнейших центров исследований зеленых крыш в Германии. В частности, за последние 10 лет началось гораздо больше исследований. Около десяти исследовательских центров зеленых крыш существует в США, а деятельность ведется примерно в 40 странах.

В недавнем исследовании влияния зеленой инфраструктуры, в частности зеленых крыш в районе Большого Манчестера, исследователи обнаружили, что добавление зеленых крыш может помочь снизить температуру, особенно в городских районах: «добавление зеленых крыш ко всем зданиям может иметь драматические последствия. влияние на максимальные температуры поверхности, сохраняя температуры ниже текущих значений 1961-1990 годов для всех периодов времени и сценариев выбросов.

Озеленение кровли имеет наибольшее значение там, где доля здания высока, а доля испарения низкая. Таким образом, наибольшая разница произошла в центрах городов ».

СКАЧАТЬ GREEN ROOF PPT
.

Смотрите также

Новости

Скидки 30% на ремонт квартиры под ключ за 120 дней

Компания МастерХаус предлагает качественные услуги по отделке, которые выполнены в соответствии с вашими пожеланиями. Даже самые невероятные фантазии можно воплотить жизнь, стоит только захотеть.

29-01-2019 Хиты:0 Новости

Подробнее

Есть вопросы? Или хотите сделать заказ?

Оставьте свои данные и мы с вами свяжемся в ближайшее время.

Индекс цитирования