Как определить водонепроницаемость бетона


Водонепроницаемость бетона - основные характеристики и показатели

Водонепроницаемость бетона – это одна из важнейших технических характеристик данного строительного материала, «сообщающая» застройщику о способности или неспособности застывшего бетона пропускать сквозь себя влагу под определенной величиной избыточного давления.

СодержаниеСвернуть

Величина водонепроницаемости важный фактор при возведении гидротехнических сооружений и бетонных сооружений, работающих в условиях повышенной влажности: резервуары для воды, тоннели метрополитенов, фундаменты, подвалы, погреба и пр.

Обозначение и метод определения водонепроницаемости

В соответствии с требованиями ГОСТ 12730.5-84 «Бетоны. Методы определения водонепроницаемости», обозначение водонепроницаемости конкретной марки строительного материала состоит из буквы «W» и четных цифр: 2,4,6,8….20. Цифра следующая за буквой «W» обозначает величину избыточного давления воды в кгс/см2 при котором испытуемый образец в течение определенного времени не пропускает воду. Например, водонепроницаемость бетона w6 составляет 6 кгс/см2 или 0,6 МПа, водонепроницаемость бетона w4 – 4 кгс/см2, 0,4МПа и т.д.

В соответствии с требованиями ГОСТ, определение водонепроницаемости бетона производят на серии образцов диаметром 150 мм и высотой: 150, 100, 50 и 30 мм. Образцы в количестве 6 шт. каждого типоразмера помещают в специальное «шестизарядное» устройство определения водонепроницаемости бетона, и постепенно увеличивая давление воды, по появившемуся «мокрому» пятну, определяют при каком давлении воды бетон начинает пропускать влагу. Общее время испытания серии образцов каждого типоразмера составляет – 4, 6, 12 и 16 часов, в зависимости от высоты (30, 50,100 и 150 соответственно).

Водонепроницаемость серии образцов оценивают по максимальному давлению воды, при котором на 4-х образцах не было инфильтрации влаги, а класс бетона по водонепроницаемости принимают по следующей таблице:

Величина водонепроницаемости серии образцов, кгс/см22,04,06,08,010,012,014,0
Класс бетона по водонепроницаемости, W2468101214

Факторы, влияющие на водонепроницаемость бетона

Величина проницаемости влаги зависит и определяется пористой структурой строительного материала.

Соответственно на водонепроницаемость конкретной партии бетона влияют следующие факторы:

  • Плотность. Здесь существует прямая зависимость – чем выше плотность, тем выше коэффициент водонепроницаемости бетона.
  • Усадка бетона. Вредный фактор, ведущий к повышению проницаемости конструкции для влаги.
  • Излишнее количество затворителя. Превышение оптимального водоцементного соотношения ведет к значительному образованию пор, что в сою очередь ведет к уменьшению коэффициента водонепроницаемости.
  • Наличие или отсутствие специальных присадок. Полимерные, пластифицирующие, кольматирующие или гидрофобизирующие значительно увеличивают способность конструкции противостоять давлению воды.
  • Вид цемента. Глиноземистый, пуццолановый или высокопрочный цемент в процессе гидратации связывают большее количество затворителя. Поэтому бетон, приготовленный на их основе, обладает более плотной структурой, следовательно, более высокой степенью водонепроницаемости.
  • Возраст конструкции. В процессе набора прочности в толще бетона увеличивается количество гидратных новообразований заполняющих поры и капилляры – водонепроницаемость возрастает.
  • Марка бетона. Здесь существует прямая зависимость – чем выше марка материала, тем выше способность противостоять влаге. Данную зависимость наглядно иллюстрирует таблица водонепроницаемость бетона:
Марка бетонаКласс бетона по водонепроницаемости, W
М1002
М1502
М2004
М2504
М3006
М3508
М40010
М4508-14
М50010-16
М60012-18

Способы повышения водонепроницаемости бетона

Учитывая сказанное, технология увеличения водонепроницаемости бетона заключается в минимизации числа пор и капилляров следующими способами:

  • Максимальное уменьшение усадки с помощью следующих мероприятий: внесение специальных присадок («Mapecure SRA», «Бисил СРА», «ASOPLAST-MZ»), применение глиноземистых, расширяющих и высокопрочных цементов, соблюдение оптимального «водоцементного» соотношения, уход за свежезалитой конструкцией (укрыв полиэтиленовой пленкой, сбрызгивание водой в течение 72 часов после заливки).
  • Тщательное вибрирование (уплотнение) с помощью специального оборудования: глубинными и наружными вибраторами.
  • Внесение специальных гидроизоляционных присадок. Эффективные добавки в бетон для водонепроницаемости: «Penetron», «Кристалл», «Типром К», «Disom-Hidrofugo», «ПЛИОНИТ АКТИВ», «Аквасил», «Полифлюид», «Пента 811» и др.
  • Вакуумирование свежеуложенного бетона с помощью специальных установок. Данный способ позволяет эффективно удалять из толщи конструкции лишнюю воду и «паразитный» воздух.

Заключение

Актуальность увеличения водонепроницаемости бетонных конструкций для частных застройщиков заключается в возможности сэкономить на дорогостоящей гидроизоляции фундамента, подвала или погреба. В зависимости от выбранного способа увеличения водонепроницаемости можно либо вообще отказаться от гидроизоляции, либо использовать самый бюджетный вариант.

марка, класс, показатель водонепроницаемости бетона

Водонепроницаемость – важная характеристика бетона, характеризующая способность материала сохранять устойчивость к проникновению воды вглубь бетонной конструкции. Это свойство напрямую связано с еще одним важным параметром – морозостойкостью, то есть способностью бетонных элементов переносить циклы замерзания-оттаивания. Этот параметр обозначается буквой W и четными цифрами в диапазоне – 2-20. Использование бетона с хорошей водонепроницаемостью позволяет сэкономить на дополнительных гидроизоляционных мероприятиях.

Характеристики бетонов разных марок водонепроницаемости

Марка материала по водонепроницаемости выбирается, в зависимости от условий эксплуатации:

  • W2. Низкий показатель. Конструкции из этого строительного материала требуют проведения дополнительных гидроизоляционных мероприятий.
  • W4. Нормальный уровень водонепроницаемости. Такой материал применяется при строительстве фундаментов в грунтах невысокой влажности. Во влажных местах – с использованием наружной гидроизоляции.
  • W6. Материал наиболее применяем в индивидуальном и массовом строительстве.
  • W8. Водонепроницаемые бетоны используются при строительстве конструкций или объектов с повышенными требованиями к устойчивости к проникновению влаги.

 

Бетоны высокой водонепроницаемости марок W10-W20 используются при строительстве гидротехнических объектов, водохранилищ, бункеров.

Способы определения стойкости бетонов к проникновению влаги

Водонепроницаемость характеризуется прямыми и косвенными показателями. К основным показателям относятся:

  • Марка, определенная по технологии «мокрого пятна». При этом определяется максимальное давление, под воздействием которого образец остается непроницаемым для воды. Испытания осуществляются на специальной установке с гнездами для 6 образцов, которые могут иметь высоту 30, 50, 100, 150 мм. Нагрузку, прилагаемую к образцам, постепенно увеличивают до появления «мокрого пятна». Максимальным считается давление, при котором «мокрое пятно» появляется на двух образцах из шести.
  • Коэффициент фильтрации. Расчет коэффициента фильтрации бетона различных марок водонепроницаемости осуществляется с помощью специальной установки, подающей воду к образцам под давлением 1,3 МПа.

Таблица прямых и косвенных показателей водопроницаемости бетона

Прямые показатели

Косвенные показатели (актуальны для тяжелых бетонов)

Марка по водонепроницаемости

Максимальное давление, МПа

Коэффициент фильтрации, см/с

Водопоглощение, %

Водоцементное соотношение (вода/цемент)

W2

0,2

7*10-9…2*10-8

 

До 0,6

W4

0,4

2*10-9…7*10-9

4,7-5,7

W6

0,6

6*10-10…2*10-9

4,2-4,7

До 0,55

W8

0,8

1*10-10…6*10-10

Менее 4,2

До 0,45

W10

1,0

6*10-11…1*10-10

W12 и более

1,2

6*10-11 и менее

Характеристики, влияющие на водонепроницаемость бетона

На эту характеристику влияет комплекс факторов:

  • Возраст бетона. Чем он больше (до определенных пределов), тем выше устойчивость материала к проникновению воды. Это правило выполняется при соблюдении условий твердения смеси. При увлажнении поверхность твердеющего бетона быстрее набирает нормативную прочность, по сравнению с поверхностью, находящейся на воздухе с относительной влажностью 50-70%. В условиях редкой смачиваемости максимальная водонепроницаемость наступает через полгода-год после заливки смеси. Увлажнение поверхности при твердении смеси особенно актуально для бетонов с низким водоцементным соотношением.
  • Пористость материала. Чем она больше, тем менее устойчив искусственный камень к проникновению воды вглубь бетонной конструкции. Наиболее устойчивы к проникновению влаги плотные бетоны. Наиболее влагопроницаемы пено- и газобетоны, особенно последние, для которых характерна открытая форма воздушных ячеек. У пенобетонов такие ячейки имеют закрытую структуру.
  • Скорость схватывания и твердения смеси. Слишком быстрое протекание этого процесса провоцирует появление трещин и воздушных пузырьков, снижающих влагоустойчивость материала.
  • Применяемое вяжущее. Лучшие показатели водонепроницаемости показывают бетоны на высокопрочном портландцементе и глиноземистом цементе. В период гидратации компоненты таких цементов формируют наиболее плотный цементный камень. Чем выше класс прочности бетона, тем выше марка его водонепроницаемости.
  • Наличие или отсутствие специализированных присадок – сульфатов железа и алюминия.

Удалить из смеси лишнюю воду, сделав затвердевший продукт более плотным, помогут рациональные технологии замеса, вакуумные установки, тщательное вибрирование вибраторами поверхностного и глубинного воздействия, прессование, вибропрессование.

Таблица соотношения классов прочности и марок водонепроницаемости бетонов

Марка

Класс прочности

Класс водонепроницаемости

М100

В7,5

W2

М150

В10В12,5

W2

М200

В15

W2-W4

М250

В20

W4

М300

В22,5

W4

М350

В25

W6

М400

В30

W8

Добавки для повышения водонепроницаемости

Повысить устойчивость бетона к воздействию воды можно как на стадии его изготовления путем введения специальных присадок, так и после – с помощью различных технологий наружной гидроизоляции.

Сейчас предлагается широкий перечень добавок, повышающих водонепроницаемость бетона, разной эффективности, способа воздействия, стоимости. Присадки нового типа не только заполняют пустоты, но и способны расширяться при контакте с водой. К таким составам относятся Penetron Admix и его отечественный аналог «Кристалл».

Преимущества гидрофобизирующих добавок:

  • повышение водонепроницаемости и морозостойкости;
  • повышение прочности бетонного камня за счет роста плотности;
  • улучшение пластичности смеси, что избавляет застройщика от необходимости использовать пластифицирующие добавки;
  • организация защиты стальной арматуры от возникновения и развития коррозионных процессов.

 

Недостатком использования таких добавок является снижение теплоизоляционных характеристик бетонной конструкции. Это связано с тем, что присадки ликвидируют воздушные пузырьки, положительно влияющие на теплоизоляционные свойства бетона.

Гидрофобизирующие добавки могут быть:

  • жидкими;
  • сухими, добавляемыми в пластичную бетонную смесь;
  • сухими, растворяемыми предварительно в воде.

В строительстве наиболее часто используются составы на основе:

  • алкоксисиланов;
  • гидросодержащих силоксанов;
  • алкилсиликанов калия – наиболее дешевый высокощелочной раствор, при работе с которым необходимо соблюдать меры предосторожности.

Наружная гидроизоляционная обработка готовой бетонной поверхности

Способы создания наружной гидроизоляции бетонных элементов и конструкций:

  • Традиционные варианты – оклеечная и обмазочная гидроизоляция фундаментов и стен. Это затратный и мало эффективный метод предотвращения проникновения влаги вглубь бетонной конструкции. При использовании рулонных гидроизоляционных материалов для обработки фундаментов необходимо устроить защитный экран, иначе при засыпке котлована на полотнищах могут возникнуть разрывы.
  • Проникающая гидроизоляция. Наиболее известным представителем этой группы является Penetron, разные виды которого используются для объемной (внесение в пластичную смесь) и поверхностной гидроизоляции. Проникающая гидроизоляция поступает в продажу в виде сухого порошка или готового жидкого пропиточного продукта. В ее состав входят: портландцемент, наполнитель и активные химприсадки, функции которых выполняют полимеры или щелочные элементы.

Действие проникающей гидроизоляции основано на ее проникновении вглубь бетонной конструкции и вступлении в реакцию с составными компонентами цементного камня. В результате реакции в порах образуются водонерастворимые кристаллы, предотвращающие проникновение воды. Такой материал, наносимый на влажные основания, предназначен для наземных и подземных объектов. При нарушении целостности поверхности эффективность гидроизоляции не снижается. Для ликвидации фонтанирующих течей предназначены быстросхватывающиеся составы «Пенеплаг».

  • Гидроизоляционные материалы для защиты швов от проникновения воды. Комплекс из прокладки «Пенебар» и раствора «Пенекрит» позволяет защитить бетонные конструкции от проникновения воды через швы.

Способ повышения водонепроницаемости бетонного элемента или конструкции выбирается, в зависимости от уровня влажности окружающей среди, напора воды, воздействующего на объект, ответственности объекта.

Марки бетона по водонепроницаемости и методы контроля

Водонепроницаемость – показатель, определяющий устойчивость бетона к пропусканию влаги под воздействием напора воды. Измеряется этот параметр в МПа, и обозначается латинской буквой W. Определяется марка бетона по водонепроницаемости числовым значением, которое может составлять от 2 до 20 единиц. Для проведения испытаний в лабораторных условиях берётся опытный образец определенного диаметра, на который и осуществляется воздействие напором воды. Показатели водонепроницаемости определяют параметры гидроизоляции для

  • гидротехнических сооружений,
  • влажных помещений,
  • цокольных этажей,
  • фундаментов,
  • подвалов.

Что влияет на показатели водонепроницаемости?

Как производится определение водонепроницаемости бетона, и какие факторы могут влиять на способность бетона сопротивляться напору воды, подаваемой под давлением? В первую очередь на степень водопроницаемости влияет капиллярно-пористый тип структуры этого материала: чем менее плотным будет бетон, чем больше в нём пор, тем легче воде просочиться через толщу материала и тем хуже будет марка бетона по водонепроницаемости. Это может быть следствием слабого уплотнения бетонной смеси при её укладке или избыток воды при затворении смеси. Для уменьшения пористости бетона используют различные добавки и пластификаторы.

Как определяется марка бетона по водонепроницаемости?

От чего зависит водонепроницаемость бетона? В первую очередь, от его состава. Наиболее высокие показатели у искусственного камня, замешиваемого на основе глиноземистого цемента. Пуццоловые портландцементы также отличаются более высокой водонепроницаемостью. Кроме того, этот показатель может быть повышен при помощи добавления в смесь сульфатов железа и алюминия.

Марки бетона по водонепроницаемости определяются согласно установленной классификации:

  • Класс W2 получают бетоны марок M100, M150, M200. Для него свойственна самая высокая проницаемость влаги. Использование бетона этого класса без гидроизоляции - недопустимо.
  • Класс W4 получают марки искусственного камня M250, M300. Для них также свойственна высокая водопроницаемость, использование без дополнительной гидроизоляции не рекомендуется.
  • Класс W6. К нему относятся марки бетона M350, M400, самые распространенные в строительстве.
  • Класс W8 отличается низким влагопоглощением - не более 4,2 от общей массы материала, используется в строительстве.
  • Классы W10 - W20 считаются специальными и применяются при возведении гидросооружений, бункеров, хранилищ цокольного типа, резервуаров для хранения воды. Дополнительная гидроизоляция в этом случае не требуется.

Какие показатели имеют значение?

Определение проницаемости материалов можно осуществлять по прямым или косвенным характеристикам. В первую категорию относят данные коэффициента фильтрации. К дополнительным характеристикам относится влагопоглощение - определяется в процентах от общей массы материала, и соотношение воды и цемента в используемом бетоне. В частности, для материалов с низкой водопроницаемостью процент поглощения воды будет не выше 4,2. С высокой - от 4,5 до 5,7 %.

Как определить водонепроницаемость бетона?

Определение водонепроницаемости бетона производится согласно ГОСТ 12730.5-84 с использованием опытных образцов в виде блоков определенного размера. Среди применяемых методов наиболее часто используются:

  1. Определение "по мокрому пятну". В этом случае испытания проводят на специальной установке, подающей воду под напором к торцевой части образца снизу. По мере увеличения давления воды производят визуальный контроль за изменениями, происходящими на поверхности бетона.
  2. Определение по фильтрационному коэффициенту. В рамках этого метода используют установку, способную подавать воду под давлением 1,3 МПа, а также (дополнительно) силикагель и весы.
  3. Вакуумный метод. Позволяет производить измерения непосредственно на объекте. Отличается высокими показателями скорости замеров.

Определение водопроницаемости с прибором ВИП-1

Прибор ВИП-1 ориентирован на автоматическую регистрацию показателей водопроницаемости бетона вакуумным методом при проведении измерений как в лаборатории, так и непосредственно на объекте. Моноблочная конструкция обеспечивает высокую скорость и простоту измерений, подходит для проведения замеров на опытных образцах, кернах или монолитных конструкциях, не требует подключения к внешним источникам питания.


 

  • ИЗМЕРИТЕЛЬ МОРОЗОСТОЙКОСТИ

    БЕТОН-ФРОСТ ускоренно определяет морозостойкость бетона в соответствии с п.4.1 и Приложением Б ГОСТ 10060-2012 после определения коэффициента преобразования, по...

  • ИЗМЕРИТЕЛЬ АКТИВНОСТИ ЦЕМЕНТА

    Ускоренное определение активности цемента за 3 часа по величине контракции цементного теста в соответствии с методиками измерения МИ 2486-98, МИ 2487-98.

  • ИЗМЕРИТЕЛЬ ВОДОНЕПРОНИЦАЕМОСТИ

    Вакуумные измерители проницаемости ВИП-1 предназначены для определения водонепроницаемости бетона и сопротивления проникновению воздуха в соответствии с ГОСТ 12...

Марки бетона по водонепроницаемости: ГОСТ, классы, методы определения

Водонепроницаемость бетона – одна из основных характеристик этого популярного строительного материала, методы определения которой регламентирует новый межгосударственный стандарт ГОСТ12730.5-2018. Показатель характеризует уровень давления водяного столба, который способен выдержать бетонный элемент. Марка бетона по водонепроницаемости обозначается буквой W и цифрами от 2 до 20.

Факторы, влияющие на устойчивость бетонных конструкций к воздействию воды

Уровень водонепроницаемости зависит от:

  • Возраста материала. Чем он старше, тем лучше противостоит проникновению влаги.
  • Соблюдения оптимальных пропорций смеси, технологии изготовления.  Водоцементное соотношение должно составлять 0,4. Важную роль играют: качество уплотнения смеси, условия, при которых схватывается и твердеет бетонная смесь до момента набора марочной прочности.
  • Класса прочности. Чем он выше, тем больше водонепроницаемость.
  • Наличия дополнительных технологических операций, увеличивающих устойчивость материала к проникновению воды. Это вакуумная минимизация влаги или вибропрессование.
  • Наличия специальных добавок.

Таблица соотношения класса прочности тяжелого бетона и марки водонепроницаемости

Класс бетона Марка водонепроницаемости Класс бетона Марка водонепроницаемости
В7,5 W2 В25 W8
В12,5 W2 В30 W10
В15 W4 В35 W8-W14
В20 W4 В40 W10-W16
В22,5 W6 В45 W12-W18

Марки водонепроницаемости бетонов и области их применения

Выделяют показатели, определяющие степень взаимодействия бетонных элементов с водой:

  • прямые – уровень водонепроницаемости, соответствующий марке, коэффициент фильтрации;
  • косвенные – водоцементное соотношение, водопоглощение, зависящее от массы.

Чаще всего при выборе вида бетона обращают внимание на первый показатель – марку водонепроницаемости. От этого параметра во многом зависят области применения строительного материала.

  • W2-W4. Это низкие показатели. Конструкции, созданные из таких материалов, нуждаются в дополнительной гидроизоляционной защите. Обычно такие смеси применяются в частном строительстве.
  • W6. Материал используется в многоэтажном гражданском строительстве, для герметизации швов между плитами и блоками ЖБИ.
  • W8. Бетонные смеси марки W8 используются при устройстве фундаментов, эксплуатируемых в условиях повышенной влажности, резервуаров, востребованных в различных производственных отраслях.
  • W10-W20. Эти марки предназначены для устройства фундаментов многоэтажных зданий, возведения гидротехнических объектов и строительства объектов, эксплуатируемых в суровом климате.

Способы испытания бетонов на водонепроницаемость

Для определения этой характеристики используются основные и вспомогательные методы. Основные:

  • Способ «мокрого пятна». Во время этого исследования измеряется максимальное давление, при котором образец не пропускает воду.
  • Коэффициент фильтрации. Этот показатель вычисляют при постоянном давлении, оказываемом в течение определенного промежутка времени.

Вспомогательные:

  • по виду вяжущего;
  • по содержанию гидрофобизирующих добавок;
  • структурный анализ – чем меньше пор, тем выше сопротивление влаге.

Для ускоренного определения водонепроницаемости используются приборы ВИП-1.2 и ВИП-1.3, которые вычисляют этот показатель по величине сопротивления бетонного элемента проникновению воздуха. Они применяются в лабораторных условиях, на строительных площадках, промышленных объектах.

Поделиться ссылкой:

Производим и предлагаем продукцию:

Читайте также:

Все статьи

Определение водонепроницаемости бетона на вертикальных конструкциях — Комплекс градостроительной политики и строительства города Москвы

19 февраля 2015 года

Технологии в строительстве позволяют нам сегодня реализовывать все более смелые проекты. Безопасность строящихся зданий и сооружений призван обеспечивать строительный контроль.

Одним из важных факторов определения качества готовой конструкции является оценка водонепроницаемости бетона при устройстве подземных частей зданий и отдельных конструкций, находящихся ниже уровня отметки горизонта в условиях повышенной влажности.

Долговечность монолитных железобетонных конструкций зависит от способности материала сопротивляться влиянию различных атмосферных факторов и агрессивных сред, в том числе увлажнению и замораживанию.

Проницаемость конструкций зависит от пористости бетона, структуры пор и свойств вяжущего и заполнителей. Мелкие поры и капилляры, к которым относятся поры цементного геля, практически непроницаемы для воды. В более крупных порах происходит фильтрация воды вследствие действия давления, градиента влажности или осмотического эффекта, по этим причинам в конструкциях наблюдается появление мокрых пятен и протечек.

Согласно ГОСТ 26633-2012 «Бетоны тяжелые и мелкозернистые. Технические условия» к монолитным конструкциям предъявляются требования по ограничению проницаемости бетона и устанавливаются следующие марки по водонепроницаемости: W2, W4, W6, W8, W10, W12, W14, W16, W18, W20.

Марка бетона по водонепроницаемости определяется давлением воды, при котором не наблюдается просачивание на четырех из шести образцов при испытаниях по методу «Мокрого пятна». Полученные значения определяют максимальное давление воды, при котором бетон является водонепроницаемым и не будет пропускать влагу.

Существуют несколько методов определения водонепроницаемости бетона:

- определение водонепроницаемости по методу «Мокрого пятна». В основе метода лежат измерения максимального давления, при котором через образец не проходит вода;

- определение водонепроницаемости по коэффициенту фильтрации. Метод основан на определении коэффициента фильтрации при постоянном давлении по измеренному количеству фильтрата и времени фильтрации;

- ускоренный метод определения водонепроницаемости бетона по величине сопротивления проникновению воздуха (воздухопроницаемости).

Широкое применение ускоренного метода связано с тем, что стандартные испытания занимают достаточно много времени, например, испытание бетона марки В10 по методу «мокрого пятна» длится более 10 дней, а при испытаниях ускоренным методом определения водонепроницаемости в конструкции займет не более 2 часов.

Также следует учитывать, что при твердении монолитных конструкций в воздушно-сухих условиях проницаемость бетона в 10 раз больше, чем при твердении контрольных образцов бетона в камере нормального хранения при влажности (95±5)% и температуре (20 ± 5)0C.

В большинстве случаев требования по водонепроницаемости бетона предъявляются к вертикальным конструкциям подземных сооружений, частям зданий, подверженным воздействию подземных вод, и конструкциям, находящимся в контакте с атмосферными осадками. При обследовании зданий и сооружений инженеры Лаборатории испытаний строительных материалов и конструкций проводят испытания по определению водонепроницаемости бетона в существующих конструкциях с применением ускоренного метода.

В четвертом квартале 2014 года в дополнение к имеющимся приборам «Агама 2РМ» для нужд Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» был приобретен прибор ВИП 1.3, который на сегодняшний день является одной из самых современных разработок Научно-производственного предприятия «Интерприбор».

Применение в лаборатории прибора ВИП 1.3 обусловлено следующими объективными показателями:

- возможность проведения испытаний на вертикальных поверхностях и местах с ограниченным доступом;

- проведение испытаний на образцах-кубах 150х150 мм и кернах ø150 мм;

- простота проведения испытаний и автоматический расчет прибором марки водонепроницаемости бетона;

- прибор имеет две камеры: центральная является измерительной, внешняя служит охранной зоной для надежной изоляции измерительной камеры от окружающей среды;

- диапазон измерения марок водонепроницаемости до W20.

Испытания по определению марки водонепроницаемости бетона инженеры лаборатории проводят на строительных объектах в конструкции и в лаборатории на отобранных образцах-кернах.

Испытания выполняются в строгом соответствии с требованиями ГОСТ 12730.5-84 «Методы определения водонепроницаемости», инструкцией прибора и утвержденной методикой выполнения работы, разработанной Лабораторией испытаний строительных материалов и конструкций ГБУ «ЦЭИИС».

ceiis.mos.ru

Водонепроницаемость бетона - характеристики

Водонепроницаемость бетона – это техническая характеристика искусственного камня, которая показывает, насколько он не пропускает влагу под давлением. Эта характеристика бетона определяется буквой W. Показатель может быть от 2 до 20.

Характеристика марок бетона по водонепроницаемости

Для определения водонепроницаемости бетона рекомендовано предварительно ознакомиться с его марками:

  • W2. В этот состав очень быстро проникает вода. Именно поэтому рекомендовано провести укладку специальной гидроизоляционной пленки для его защиты.
  • W4. По сравнению с предыдущим материалом бетон w4 является менее водонепроницаемым. Но, он нуждается в гидроизоляционной защите. Для того чтобы улучшить показатели рекомендовано добавление в смесь разнообразных реагентов.
  • W6. Бетон w6 по своим техническим характеристикам схож с маркой бетона М350. Он характеризуется относительной устойчивостью к проницаемости водой. Смесь применяется при возведении зданий, которые имеют коммерческое или гражданское назначение. Раствор устойчив к воде, поэтому с его применением проводится герметизация зазоров между плитами ЖБИ, ремонтируются монолитные здания, создаются гидравлические резервуары. Применяется смесь для заливки фундамента.
  • W8. Для его изготовления используется высококачественный цемент, в состав которого входит клинкер в большом количестве. С его использованием закладываются фундаменты, возводятся емкости и резервуары, которые применяются в хозяйственной и промышленной сфере. Бетон w8 применяется для сооружений, которые будут эксплуатироваться в условиях повышенной влажности.
  • Бетон W10 — W20. Эта марка бетона не требует использовать дополнительный гидроизоляционный слой. Марки бетона w 10 и w20 используются для заливки фундаментов в многоэтажном строительстве. Применение бетона w10 рекомендовано при возведении гидротехнических зданий, которые должны быть прочными и надежными. Этот водонепроницаемый бетон обладает высоким уровнем морозостойкости, что предоставляет возможность его эксплуатации для возведения зданий в максимально жестких климатических условиях.

Существуют различные марки бетона по водонепроницаемости, что позволяет подобрать наиболее приемлемый вариант в зависимости от поставленных задач.

Марки бетона

Считается бетон водонепроницаемым, если он соответствует стандартам гост 12730. В этом случае марка W2 не рассматривается, так как смесь не выполняет своих функций.

Бетон W4 значение водопоглощения имеет 4,7-5,7 процентов в зависимости от его массы. Материал w6 в Москве имеет показатели 4,2-4,7. W8 бетон характеризуется показателем до 4,2. W10-W20 – это водостойкий бетон, который обладает отменными техзническими характеристиками.

Пропорции для бетонной смеси

Перед тем, как сделать бетон водонепроницаемый рекомендовано определить пропорции. При изготовлении материала их нужно строго придерживаться, так как при отклонении от норм наблюдается ухудшение качества бетонной смеси.

Особое внимание нужно обращать на пропорцию вода/цемент. Рекомендуется использовать цемент, который имеет марку М300-М400. В редких случаях применяется строительный материал марки М200.

Неплохим средним вариантом является класс 15. Перед применением цемента его просеивают через сито. Получение гидрофобного эффекта обеспечивается благодаря варьированию таких компонентов, как песок и гравий. Чтобы приготовить водонепроницаемый бетон своими руками нужно следить, чтобы песка было в два раза меньше, чем гравия. Гравий, цемент и песок могут использоваться в таких пропорциях:

Соблюдение этих пропорций обеспечит качественное застывание смеси. Также рекомендуется применение разнообразных добавок, которые обеспечат водонепроницаемость бетона (w6 или другой марки).

Способы определения водонепроницаемости

Показатель водонепроницаемости искусственного камня зависит от разнообразных факторов. На это свойство влияет специфичная каппилярно-пористая структура строительного материала. Если бетон плотный, то он имеет поры в минимальном количестве, что приводит к повышению показателя водонепроницаемости.

Большой объем пор наблюдается при усадке, недостаточно уплотненном составе или наличии воды. При засыхании и затвердевании бетонной смеси наблюдается ее усадка и снижается объем. Чрезмерно интенсивная усадка наблюдается при недостаточном армировании и испарении воды. На это влияют внешние факторы атмосферы, при которых проводится высушивание бетонной смеси.

Изменение характера пористости наблюдается при изменении воздухововлекающих добавок. После закрытия пор наблюдается увеличение показателя водонепроницаемости. Для получения высоких показателей рекомендуется делать бетонную смесь из глиноземистого и высокопрочного цемента. Во время гидрации этими материалами осуществляется  присоединение большого количества воды и образования плотного камня.

На водонепроницаемость влияют свойства применяемых добавок. Для повышения степени уплотнения смеси рекомендовано применение сульфатов таких материалов, как алюминий и железо. Для того чтобы удалить лишнюю воду и обеспечить водонепроницаемость, рекомендовано использовать вакуум. Усадка бетонной смеси проводится методом вибрирования и прессования. Если используется пуццолановый цемент, то нужно следить, чтобы в его состав в оптимальном количестве входили пуццолановые добавки, что положительно отобразится на показатели.

Показатель водонепроницаемости зависит от возраста искусственного камня.  Чем больше возраст у бетона, тем лучше его гидратные новообразования.

Для того чтобы определить водонепроницаемость бетона w4, 6, 8, 10-20, рекомендовано применение основных и вспомогательных методик.

Основные методы

Основные методы определения водонепроницаемости бетонной смеси заключаются в:

  • Методе мокрого пятна. Нужно измерить максимальное давление, при котором бетон не пропускает воду.
  • Коэффициента фильтрации. Определяется показатель,  который определяет постоянное давление и временный отрезок процесса фильтрации.

Вспомогательные методы

Вспомогательные способы определяются в соответствии с внешним видом вещества, который применяется для связывания раствора. К таким веществам относятся портландцемент, гидрофобный цемент. Также определяется содержание химических добавок. Вспомогательные способы заключаются в определении структуры пор, при уменьшении количества которых показатель увеличивается.

Как сделать водонепроницаемой бетонную смесь

Для того чтобы увеличить водостойкость бетонной смеси, рекомендовано применение большого количества способов. При изготовлении смеси своими руками рекомендуется устранять усадку бетона, а также обеспечить временное воздействие на него.

Искоренение усадки состава

Соответственно свойствам материала средних марок, в нем имеются поры в достаточном количестве. Они способствуют проникновению влаги в материал. Это объясняется тем, что в процессе застывания наблюдается постепенная усадка бетона.

Для того чтобы уменьшить степень усадки бетона рекомендуется выполнение определенных правил:

  • Для того чтобы повысить класс бетона,  рекомендовано применение специальных составов. С их помощью образовывается специальная пленка, с помощью которой ограничивается возможность усадки. Добавление составов должно проводиться в строгом соответствии с инструкцией, что обеспечит отменные технические характеристики бетонной смеси. В противном случае будет диагностироваться противоположный эффект.
  • После приготовления раствора каждые 4 часа его нужно взбрызгивать водой. Процедура должна проводиться не более 4 дней. По истечению этого времени бетон должен застывать естественным путем.
  • После заливки материал должен накрываться полиэтиленовой пленкой. Это предоставит возможность образования небольшого конденсата, который исключит усадку бетона. Во время проведения манипуляции рекомендуется следить за тем, чтобы пленка не касалась бетона.

Временное воздействие

С целью повышения водонепроницаемости бетона рекомендовано обеспечить временное воздействие. Материал должен сохраняться в сухом виде продолжительный период, что приведет к улучшению технических характеристик. Чтобы способствовать высокому коэффициенту фильтрации, нужно правильно хранить бетонную смесь.

Хранение материала должно проводиться в темном и теплом месте, которое характеризуется высоким уровнем влаги. Увеличение качества искусственного камня в несколько раз наблюдается уже по истечению 6 месяцев хранения.

Другие способы

Для того чтобы создать водонепроницаемый бетон раствором гидрофобного цемента, рекомендовано нанесение обмазочных материалов на поверхность. С этой целью применяется мастика или горячий битум. Перед нанесением на поверхность нужно очистить бетонную конструкцию и прогрунтовать ее. Это обеспечивает качественное сцепление обмазочных материалов и бетон. На завершающем этапе проводится нанесение мастики или битума в несколько слоев. Толщина одного слоя должна составлять не менее 2 миллиметров. По истечению нескольких минут после нанесения состава наблюдается образование защитной корки на поверхности.

Этот метод характеризуется наличием определенного недостатка. При деформации искусственного камня разрушается обмазочный слой. При неправильном выборе мастики защитный слой может стекать.

Для того чтобы создать защитный слой, рекомендовано применение окрасочной гидроизоляции, с помощью которой улучшаются водонепроницаемые качества бетонной конструкции. Методика заключается в том, что на поверхность наносится эмульсия, разогретый битум или мастика. После этого наносится грунтовка или краска в несколько слоев.

Для увеличения влагонепроницаемости бетона рекомендовано применять специальные добавки, которые на современном строительном рынке представлены в широком ассортименте. Рекомендовано применение хлорного железа и силикатного клея. Самым дешевым вариантом добавки является нитрат кальция. Он имеет отличную сопротивляемость по отношению к влаге. Средство хорошо растворяется в воде, что упрощает процесс его использования. Для обеспечения высокого уровня влагонепроницаемости рекомендовано применение натрия олеата.  Благодаря всем вышеперечисленным добавкам обеспечивается увеличение показателя. Выбор добавки зависит от финансовых возможностей пользователя.

Водонепроницаемость является важным показателем, с помощью которого обеспечивается определение качества бетона. В соответствии с этой величиной обеспечиваются марки искусственного камня. От них зависит не только количество пропускаемой влаги, но и количество нагрузок, которые выдерживает искусственный камень. Для увеличения показателя влагонепроницаемости в домашних условиях рекомендовано применение полиэтиленовой пленки для покрытия поверхности. Также на бетон могут наноситься обмазочные или красочные материалы.

% PDF-1.4 % 1516 0 объект > endobj xref 1516 87 0000000016 00000 н. 0000002095 00000 н. 0000002384 00000 н. 0000003282 00000 н. 0000003680 00000 н. 0000003767 00000 н. 0000003915 00000 н. 0000004074 00000 н. 0000004242 00000 п. 0000004306 00000 н. 0000004432 00000 н. 0000004495 00000 н. 0000004615 00000 н. 0000004678 00000 п. 0000004812 00000 н. 0000004875 00000 н. 0000004996 00000 н. 0000005059 00000 н. 0000005174 00000 п. 0000005236 00000 п. 0000005367 00000 н. 0000005429 00000 п. 0000005631 00000 н. 0000005693 00000 п. 0000005879 00000 н. 0000005941 00000 н. 0000006050 00000 н. 0000006112 00000 н. 0000006248 00000 н. 0000006310 00000 н. 0000006447 00000 н. 0000006509 00000 н. 0000006645 00000 н. 0000006707 00000 н. 0000006820 00000 н. 0000006882 00000 н. 0000006998 00000 п. 0000007060 00000 п. 0000007237 00000 н. 0000007299 00000 н. 0000007427 00000 н. 0000007489 00000 н. 0000007671 00000 н. 0000007733 00000 н. 0000007959 00000 н. 0000008022 00000 н. 0000008204 00000 н. 0000008267 00000 н. 0000008416 00000 н. 0000008479 00000 н. 0000008605 00000 н. 0000008668 00000 н. 0000008809 00000 н. 0000008871 00000 н. 0000008996 00000 н. 0000009059 00000 н. 0000009224 00000 н. 0000009286 00000 н. 0000009396 00000 н. 0000009459 00000 н. 0000009588 00000 н. 0000009650 00000 н. 0000009780 00000 н. 0000009842 00000 н. 0000009958 00000 н. 0000010021 00000 п. 0000010083 00000 п. 0000010145 00000 п. 0000010263 00000 п. 0000010382 00000 п. 0000010424 00000 п. 0000010447 00000 п. 0000011058 00000 п. 0000011080 00000 п. 0000011205 00000 п. 0000011325 00000 п. 0000011452 00000 п. 0000011572 00000 п. 0000011687 00000 п. 0000011810 00000 п. 0000011940 00000 п. 0000012058 00000 п. 0000012182 00000 п. 0000012305 00000 п. 0000012431 00000 п. 0000002450 00000 н. 0000003259 00000 н. трейлер ] >> startxref 0 %% EOF 1517 0 объект > / OpenAction 1518 0 R / Метаданные 1513 0 R >> endobj 1518 0 объект > endobj 1601 0 объект > ручей Hb```g` "01

.

Стойкость к замораживанию-оттаиванию

Когда вода замерзает, она расширяется примерно на 9 процентов. Когда вода во влажном бетоне замерзает, она создает давление в порах бетона. Если создаваемое давление превысит предел прочности бетона на разрыв, полость расширится и разорвется. Накопительный эффект последовательных циклов замораживания-оттаивания и разрушение пасты и заполнителя может в конечном итоге вызвать расширение и растрескивание, образование окалины и крошение бетона.

Химикаты для борьбы с обледенением для тротуаров включают хлорид натрия, хлорид кальция, хлорид магния и хлорид калия.Эти химические вещества снижают температуру замерзания осадков, выпадающих на тротуары. Недавняя тенденция заключалась в появлении широкого спектра смесей этих материалов для улучшения характеристик при одновременном снижении затрат, и передовая практика показывает, что обильная дозировка раствора более четырех процентов имеет тенденцию к снижению вероятности образования накипи на поверхностях дорожного покрытия. Высокая концентрация антиобледенителя сокращает количество циклов замерзания и оттаивания дорожного покрытия за счет значительного снижения температуры замерзания.

Антиобледенители для специальных применений, таких как тротуары в аэропортах, требуют нехлоридных материалов для предотвращения повреждения самолетов. Список антиобледенителей, используемых для этих целей, включает мочевину, ацетат калия, пропиленгликоль и этиленгликоли.

Поскольку образование накипи на покрытиях всех типов вызвано физическим воздействием солей, использование высокопрочного (4000 фунтов на квадратный дюйм или более), воздухововлекающего бетона с низкой проницаемостью имеет решающее значение для обеспечения хорошей долговечности в этих случаях.

Таблица 11-5 15-го издания «Проектирование и контроль бетонных смесей» дает прекрасное руководство по эффективным температурам и включает влияние на бетон, практические пределы температуры, химическую форму и коррозию металлов.

Щелкните здесь, чтобы ознакомиться с примером использования проводящего бетона для борьбы с обледенением настила моста.

D-Cracking - Растрескивание бетонных покрытий, вызванное разложением заполнителя в бетоне в результате замерзания-оттаивания, называется D-растрескиванием. D-трещины - это близкорасположенные образования трещин, параллельные поперечным и продольным швам, которые позже многократно расширяются от швов к центру панели дорожного покрытия. D-растрескивание является функцией основных свойств определенных типов частиц заполнителя и окружающей среды, в которой находится дорожное покрытие.

Из-за естественного накопления воды под дорожным покрытием в слое основания и основания, заполнитель может со временем стать насыщенным. Затем при циклах замораживания и оттаивания в насыщенном заполнителе в нижней части плиты начинается растрескивание бетона и продолжается вверх, пока не достигнет поверхности износа. Эту проблему можно уменьшить либо путем выбора агрегатов, которые лучше работают в циклах замораживания-оттаивания, либо, если необходимо использовать маргинальные агрегаты, путем уменьшения максимального размера частиц.Также может оказаться полезным установка эффективных дренажных систем для отвода свободной воды из-под тротуара.

Поперечное сечение воздухововлекающего (справа) и невововлекающего бетона. Воздушные пустоты большого размера - это захват воздуха. Маленькие пузырьки точечного размера (увлеченный воздух), равномерно распределенные в пасте, представляют собой полезные воздушные пустоты. Обратите внимание на сравнение с обычным выводом.

Воздухововлечение - Степень воздействия замораживания-оттаивания варьируется в зависимости от региона США.Местные записи погоды могут помочь определить серьезность воздействия. Устойчивость бетона к замерзанию и оттаиванию во влажном состоянии значительно повышается за счет использования специально втянутого воздуха. Крошечные пустоты с увлеченным воздухом действуют как пустые камеры в пасте для замерзания и миграции воды, что снижает давление в порах и предотвращает повреждение бетона. Бетон с низкой проницаемостью (то есть с низким водоцементным соотношением и адекватным твердением) лучше выдерживает циклы замораживания-оттаивания.В редких случаях может возникнуть скопление воздушных пустот, что приведет к потере прочности на сжатие. Подробнее о кластеризации воздушных пустот.

Типичный пример покрытой окалиной бетонной поверхности

Предотвращение образования окалины в бетоне

Образование окалины определяется как общая потеря поверхностного раствора или раствора, окружающего крупные частицы заполнителя на поверхности бетона. Эта проблема обычно вызвана расширением воды из-за циклов замораживания и оттаивания и использования химикатов для борьбы с обледенением; однако бетон надлежащего качества, произведенный, обработанный и затвердевший не должен подвергаться подобному ухудшению.Существует четкая цепочка ответственности за производство устойчивого к образованию накипи бетона.

Крупным планом вид на ледяные вмятины в замороженном свежем бетоне. Образования кристаллов льда возникают в виде замерзания незатвердевшего бетона.


Замерзание.
Бетон очень мало обладает прочностью при низких температурах. Соответственно, свежеуложенный бетон необходимо защищать от замерзания до тех пор, пока степень насыщения бетона не будет достаточно снижена за счет гидратации цемента.Время, за которое достигается это уменьшение, примерно соответствует времени, необходимому для достижения бетоном прочности на сжатие 500 фунтов на квадратный дюйм. Бетон, который будет подвергаться воздействию антиобледенителя, должен достигнуть прочности 4000 фунтов на квадратный дюйм перед повторными циклами замораживания и оттаивания.

Оптимизация использования летучей золы в бетоне Холодная погода и зимние условия могут быть сложными, когда бетон содержит летучую золу. Зольный бетон, особенно при использовании на более высоких уровнях, обычно имеет увеличенное время схватывания и медленный набор прочности, что приводит к низкой прочности в раннем возрасте и задержкам в темпах строительства.Кроме того, бетон, содержащий летучую золу, часто считается более восприимчивым к образованию накипи на поверхности при воздействии химикатов для борьбы с обледенением, чем бетон из портландцемента. Поэтому важно знать, как регулировать количество летучей золы, чтобы свести к минимуму недостатки и при этом максимизировать преимущества.

Архитектор многоэтажного дома в Бэйвью оптимизировал количество летучей золы на основе требований спецификации бетона, графика строительства и температуры.Он ограничил количество летучей золы в плитах на уклоне, уложенном в зимние месяцы, до 20 процентов. Если невозможно обеспечить адекватное отверждение или если бетон подвергается замерзанию и оттаиванию в присутствии антиобледенительных солей, количество летучей золы всегда должно быть меньше 25 процентов. Подробнее об оптимизации использования летучей золы в бетоне.

Публикации

Для разных бетонов требуется разная степень прочности в зависимости от окружающей среды и желаемых свойств. Руководство Specifer по долговечному бетону, EB221, предназначено для предоставления достаточной информации, позволяющей практикующему специалисту выбирать материалы и параметры конструкции для получения прочного бетона в различных средах.

Оптимизация использования летучей золы в бетоне В статье обсуждаются вопросы, связанные с использованием летучей золы в бетоне от низких до очень высоких уровней, и даются рекомендации по использованию летучей золы без ущерба для строительного процесса или качества готового продукта. Тематические исследования были выбраны в качестве примеров некоторых из наиболее требовательных применений зольного бетона для снижения ASR, устойчивости к хлоридам и зеленого строительства.

.

Как рассчитать соотношение воды и цемента

ПОНИМАНИЕ, КАЛЕНСКИЙ БЕТОН
Время: 05:57
Посмотрите это понятное объяснение причин отслаивания бетона от эксперта по бетону Криса Салливана.

Соотношение воды и цемента позволяет сравнить, сколько воды и цемента используется в бетонной смеси. Низкое водоцементное соотношение делает бетон более прочным, но с ним труднее работать.

КАК РАСЧЕТ ВОДОЦЕМЕНТА

Отношение воды к цементу рассчитывается путем деления воды в одном кубическом ярде смеси (в фунтах) на количество цемента в смеси (в фунтах).Таким образом, если в одном кубическом ярде смеси содержится 235 фунтов воды и 470 фунтов цемента, то соотношение воды и цемента составляет 0,50.

Если в смеси указано количество воды в галлонах, умножьте галлоны на 8,33, чтобы узнать, сколько фунтов содержится в смеси.

Не математик? Наймите подрядчика по бетону рядом с вами, чтобы убедиться, что вы получаете бетон высокого качества.

ИСПОЛЬЗУЙТЕ НИЗКОЕ СООТНОШЕНИЕ ВОДЫ К ЦЕМЕНТУ

Низкое соотношение воды и цемента - проблема номер один, влияющая на качество бетона.

Низкое водоцементное соотношение влияет на все желаемые свойства бетона, перечисленные в желаемых свойствах бетонного сечения.

Используйте максимальное отношение воды к цементу .50, когда бетон подвергается замерзанию и оттаиванию во влажном состоянии или химикатов для борьбы с обледенением согласно Единым строительным нормам 1997 года. (Таблица 19-A-2)

Используйте максимальное соотношение воды и цемента 0,45 для бетона с суровыми или очень суровыми сульфатными условиями в соответствии с Единообразными строительными нормами 1997 года (Таблица 19-A-4).

Водопроницаемость увеличивается экспоненциально, когда водоцементный коэффициент бетона превышает.50.

Прочность увеличивается. Чем менее проницаема бетонная смесь.

Прочность повышается при более низком водоцементном соотношении. Водоцементное соотношение 0,45, скорее всего, достигнет 4500 фунтов на квадратный дюйм или больше. Водоцементное соотношение .50, вероятно, достигнет 4000 фунтов на квадратный дюйм или больше.

Для получения полной информации о едином строительном кодексе относительно бетонной конструкции обратитесь к своему архитектору, поставщику готовой смеси или в вашу местную библиотеку.

Узнайте, как правильно вылечить бетонную плиту.

Дополнительная информация:

Бетонные подрядчики: поиск пароизоляции для бетонных плит

.

Оценка взаимосвязи между водопоглощением и долговечностью бетонных материалов

Окружающая среда оказывает значительное влияние на водопоглощение бетонных материалов. В данной статье представлено экспериментальное исследование влияния водопоглощения на долговечность бетонных материалов. Также представлен подробный анализ, чтобы установить полезные отношения между ними. Образцы бетона с разным водопоглощением были приготовлены в различных условиях отверждения, и результаты показали, что условия отверждения могут значительно повлиять на водопоглощение поверхности.СЭМ-фотографии также показали, что разные условия отверждения вызывают разную микроструктуру. После 28-дневного отверждения были исследованы прочность на сжатие, проницаемость, сульфатная атака и диффузия хлорид-ионов бетонных образцов. В результате как поверхностная сорбционная способность, так и внутренняя сорбционная способность не имеют четкой связи с прочностью на сжатие. Полученные результаты также показали, что только поверхностное водопоглощение связано с характеристиками бетона, включая проницаемость, сульфатную атаку и диффузию хлорид-ионов.Кроме того, как непроницаемость, так и устойчивость к сульфатной атаке были линейно связаны с сорбционной способностью поверхности, и оба коэффициента корреляции были не менее 0,9. Кроме того, коэффициент диффузии хлорид-иона имеет экспоненциальную зависимость от поверхностного водопоглощения с более высоким коэффициентом корреляции. Однако не было обнаружено явной взаимосвязи между внутренним водопоглощением и долговечностью, такой как непроницаемость, устойчивость к сульфатной атаке и диффузия хлорид-ионов.

1. Введение

Прочность бетона играет решающую роль в контроле над его эксплуатационной пригодностью.Кроме того, долговечность бетона в основном зависит от способности жидкости проникать в микроструктуру бетона, которая получила название проницаемости. Высокая проницаемость привела к введению молекул, которые вступают в реакцию и разрушают его химическую стабильность [1]. Более того, низкая проницаемость бетона может повысить устойчивость к проникновению воды, ионов сульфата, ионов хлора, ионов щелочных металлов и других вредных веществ, вызывающих химическое воздействие [2]. Проницаемость бетона была тесно связана с характеристиками его пористой структуры в цементном тесте и интенсивностью микротрещин на границе раздела заполнитель-цементное тесто, а также внутри самого теста [3].Здесь структура пор в основном включает объем и размер связанных между собой капиллярных пор. Как известно, реакция гидратации цемента приводит к образованию продукта, состоящего из твердой и пористой систем. Сеть пор матрицы цементного теста обеспечивает проход для переноса жидкости в бетон, и ее развитие зависит от ряда факторов, включая свойства и состав материалов, составляющих бетон, начальные условия отверждения и его продолжительность, возраст при испытании, климатическое воздействие при сушке и кондиционировании бетона [4, 5].Температура отверждения и продолжительность влажного отверждения являются ключевыми факторами для правильной структуры пор. Эффективность начального отверждения становится более важной, когда минеральные добавки, такие как летучая зола, используются в качестве частичной замены цемента в бетоне. Многие исследователи сообщают, что минеральные добавки требуют относительно длительного периода отверждения для того, чтобы проявился благоприятный пуццолановый эффект на характеристики бетона [6, 7].

Сорбционная способность - это показатель переноса влаги в ненасыщенные образцы, и в последнее время он также был признан важным показателем прочности бетона [8].Во время процесса сорбции движущей силой проникновения воды в бетон является капиллярное всасывание внутри порового пространства бетона, а не напор [9]. Подробная характеристика пористой структуры бетона может быть проанализирована с помощью многих методов, но передовые методы громоздки, недоступны и непригодны для повседневной бетонной практики [3]. Тестирование сорбционной способности также более репрезентативно для типичных полевых условий. Некоторые эксперты предположили, что этот метод также можно использовать для измерения общего объема пор капилляров и пор геля в бетоне [10].Мартис и Феррарис показали, что коэффициент сорбционной способности имеет важное значение для прогнозирования срока службы бетона как конструкционного материала и улучшения его характеристик [11]. Водопоглощение при погружении также считается важным параметром характеристик бетона. Несколько экспериментальных исследований показали, что проницаемость капилляров существенно зависит от условий отверждения [12]. Достаточное отверждение важно для бетона, чтобы обеспечить его потенциальные характеристики [13].

Теоретические соотношения между сорбционной способностью и проницаемостью установлены в литературе [14, 15]. Однако эти отношения не получили обширной экспериментальной оценки. В этом исследовании общий объем капилляров и пор геля не измерялся напрямую, а оценивался с использованием поглощения воды при испытании на замачивание. Основная цель настоящей работы - изучить влияние водопоглощения на долговечность бетона, такую ​​как прочность на сжатие, проницаемость, сульфатное воздействие и диффузия хлоридов.В рамках этих испытаний проводятся механические испытания, испытания на непроницаемость, испытания на сульфатную стойкость и испытания на миграцию хлоридов. Также представлен подробный анализ для установления полезной взаимосвязи между этими параметрами.

2. Материалы и методы
2.1. Материалы

В экспериментальных исследованиях использовался OPC 42.5. Химический состав этого цемента приведен в таблице 1. В испытаниях использовались щебень и кварцевый песок с модулем крупности 2,4.Максимальный размер частиц агрегатов - 20 мм. По результатам экспериментов удельный вес песка и щебня составил 2650 и 2800 соответственно. В качестве добавки к бетону использовали поликарбоксилатные водоредукторы.


Образец Химический состав (%)
CaO SiO 2 Al 2 O 3 Fe 2 O 3 MgO SO 3 Na 2 Oeq

Цемент 63.6 23,74 5,56 3,96 1,45 0,71 0,45

2,2. Методы

Все бетонные смеси готовились в лабораторных условиях. Были использованы два вида водоцементного отношения ( w / c ), и подробные пропорции смеси исследуемого бетона приведены в таблице 2. Для определения прочности на сжатие были отлиты кубики мм. Керны диаметром мм были подготовлены для испытания на проницаемость, а бетонные цилиндры мм также были подготовлены для испытания диффузии ионов хлора.Все образцы отливали в стальные формы и уплотняли на вибростоле.


Номер Цемент Песок Щебень Вода Примесь

A 420 635 1149 168 5,21
B 420 635 1149 189 5.21

Для достижения различного водопоглощения образцы подвергали различным методам отверждения следующим образом: Отверждение a: образцы погружали в воду (° C) после извлечения из формы до проведения испытаний; Отверждение b: после извлечения из формы образцы отверждали на воздухе (° C, относительная влажность 90 ± 5%) до испытания; Отверждение c: образцы отверждали на воздухе (° C, относительная влажность 60 ± 5%) до испытания; Отверждение d: образцы погружали в воду на 7 дней после извлечения из формы, а затем помещали в условия воздуха (° C, относительная влажность 90 ± 5%) до испытания; Отверждение е: образцы погружали в воду на 7 дней после извлечения из формы, а затем помещали в условия воздуха (° C, относительная влажность 60 ± 5%) до испытания.

Сорбционную способность бетона оценивали по высоте проникновения и водопоглощению, и введение этого метода испытаний показано на рисунке 1. Все эти образцы были высушены при 60 ° C в течение 24 часов, чтобы минимизировать повреждение микроструктуры из-за чрезмерного высыхания. Для высоты проникновения поверхность образца длиной 3-5 мм контактировала с водой, как показано на рис. 1. Поскольку поверхность образца становилась темной, когда она впитывала воду, высота проникновения на стороне образцов составляла наблюдается во время тестирования.Для водопоглощения поверхностный и средний сегменты были вырезаны из образцов соответственно, и, таким образом, также были измерены поверхностное водопоглощение и внутреннее водопоглощение. Перед испытаниями образцы герметизировали сверху и по бокам и помещали в водяную баню так, чтобы открытое дно постоянно погружалось на глубину 3–5 мм. Через 4 дня измеряли вес образцов и измеряли водопоглощение.


Проницаемость бетона была оценена в соответствии с Кодексом испытаний бетона для строительства портов и водоводов (JTJ 270-98).Давление воды 1,2 МПа ± 0,5 МПа было приложено к бетону в течение 24 часов, а затем была измерена высота проницаемости путем раскалывания бетона, как показано на рисунке 2. Коэффициент проницаемости был рассчитан с использованием где - коэффициент относительной проницаемости (мм / ч), - средняя высота проницаемости (мм), - абсорбция бетона (0,03), - время испытания (ч), - это давление воды (мм). Устойчивость к сульфатной атаке оценивалась с помощью циклов сухого-влажного тестирования.Образцы выдерживали в растворе сульфата в течение 12 ч, затем сушили при 60 ° C в течение 12 ч, а затем помещали в раствор сульфата на 12 ч в цикле. Использовали сульфат натрия с концентрацией 5%. Прочность на сжатие измеряли во время испытаний.


Тест быстрой миграции - это нестационарная миграция с использованием внешнего электрического поля для ускорения проникновения хлоридов. Тест является относительно простым и быстрым, продолжительность теста в большинстве случаев составляет 24 часа.Образцы бетона диаметром 100 мм и толщиной 175 мм были разрезаны на срезы толщиной 50 мм, соответственно, от поверхности и центра образцов. К образцу прикладывали внешний потенциал 30 В, при этом испытуемая поверхность подвергалась воздействию 10% раствора NaCl, а противоположная поверхность - 0,3 М раствору NaOH в течение определенного времени, затем образец раскалывали, и глубина проникновения хлоридов могла быть уменьшена. измеряется колориметрическим методом.

3. Результаты и обсуждение
3.1. Водопоглощение

Высота проницаемости может быть измерена путем испытания на пропитку, и результаты этого представлены на рисунке 3. Можно показать, что высота проникновения, очевидно, увеличивалась со временем в течение 12 часов. Для разных методов отверждения высота проникновения не была одинаковой. Напротив, образцы, отвержденные в условиях b (° C, относительная влажность 90 ± 5%), показали самую низкую высоту проникновения, а образцы отверждения c - самую высокую. Образцы с более низким w / c также показали меньшую высоту проникновения.Это указывает на то, что разные условия отверждения вызывают различную проницаемость образцов.

Сорбция зависит как от капиллярного давления, так и от эффективной пористости. Капиллярное давление связано с размером пор через уравнение Юнга-Лапласа, а эффективная пористость относится к поровому пространству в капиллярах и порах геля. Кроме того, разный размер пор приводит к разному капиллярному давлению, и капиллярное давление бетона можно рассчитать по среднему размеру пор. Чтобы учесть поверхностный эффект, были исследованы как поверхностное водопоглощение, так и внутреннее водопоглощение.Водопоглощение измеряется путем измерения увеличения массы в процентах от сухой массы. На рисунке 4 представлены результаты поверхностного и внутреннего водопоглощения. Видно, что у всех образцов поверхностное водопоглощение выше, чем внутреннее. Это связано с быстрой потерей воды в покрывающем бетоне во время отверждения. Как и следовало ожидать, более высокое водопоглощение соответствует большей высоте проникновения. Что касается водопоглощения поверхности, результаты показали, что образец, подвергнутый отверждению на воздухе (° C, относительная влажность 90 ± 5%), показал низкие свойства водопоглощения по сравнению с другими образцами.Очевидно, что условия воздуха (° C, относительная влажность 60 ± 5%) вызывали наибольшее водопоглощение. Это может быть связано с более высокой пористостью бетона, выдержанного на воздухе (° C, относительная влажность 60 ± 5%). В этих условиях отверждения бетонная поверхность быстро теряет гидратационную воду. С другой стороны, для внутреннего водопоглощения образцы, подвергшиеся различным условиям отверждения, показали аналогичные результаты. Таким образом, методы отверждения имеют большое влияние на свойства поверхности. Для образцов с разными значениями w / c видно, что водопоглощение поверхности образцов с w / c равно 0.45 лишь немного выше, чем 0,4. Кроме того, между обоими образцами было очень мало различий по внутреннему водопоглощению, а w / c , по-видимому, мало влияет на внутреннее водопоглощение. Чтобы исследовать влияние отверждения на микроструктуру бетона, микроструктура образцов бетона, подвергшихся различным условиям отверждения, также была проанализирована с помощью SEM. Поскольку имелась большая разница в водопоглощении поверхности, микроструктура поверхности бетона была дополнительно изучена.На рисунке 5 показаны фотографии поверхностного бетона, полученные с помощью SEM, а на рисунке 5 (а) показан образец, подвергнутый воздействию условия b, а на рисунке 5 (b) показан образец, подвергшийся воздействию условия d. На Рисунке 5 можно увидеть разные структуры. Для образца, отвержденного в состоянии b, микроструктура была более компактной. Однако для образца, отвержденного в состоянии b, имелись отверстия и рыхлая структура. Это соответствует результатам водопоглощения.

3.2. Взаимосвязь между водопоглощением и прочностью на сжатие

После отверждения в течение 28 дней была измерена прочность на сжатие, и на Рисунке 6 представлены результаты прочности на сжатие.Образцы, отвержденные на воздухе (° C, относительная влажность 90 ± 5%), демонстрируют самую высокую прочность, а образцы, отвержденные на воздухе (° C, относительная влажность 60 ± 5%), имеют самую низкую прочность. Влияние сорбционной способности на прочность при сжатии показано на рисунке 7. Рисунки показывают, что как поверхностная, так и внутренняя сорбционная способность не имеют четкой связи с прочностью на сжатие. Хотя образцы различаются по водопоглощению на поверхности, разница во внутреннем водопоглощении незначительна. Кроме того, высокое водопоглощение поверхности только снизило прочность облицовочного бетона на сжатие.Вся прочность бетона зависит как от поверхности, так и от внутренней конструкции. Итак, прочность бетона не может быть оценена по водопоглощению.


3.3. Отношения между водопоглощением и водопроницаемостью

Были измерены коэффициенты проницаемости образцов с различными условиями отверждения, и результаты представлены на рисунке 8. Была также проанализирована взаимосвязь между коэффициентом проницаемости и водопоглощением, как показано на рисунке 9. Из рисунков мы можем Видно, что не было четкой связи между коэффициентом проницаемости и коэффициентом внутренней проницаемости.Однако, по-видимому, существует линейная корреляция между коэффициентом проницаемости и коэффициентом проницаемости поверхности. Коэффициент проницаемости увеличивался с увеличением водопоглощения поверхности. Как мы знаем, и на проницаемость, и на водопоглощение влияла пористая структура цементного теста и переход жидкости с поверхности во внутрь. Таким образом, это указывает на то, что поверхностное водопоглощение оказывает большое влияние на проницаемость. Кроме того, высокие коэффициенты корреляции 0.90 показали, что существует значительная линейная корреляция между проницаемостью и поверхностным водопоглощением. Кроме того, очевидно, что внутреннее водопоглощение мало влияет на проницаемость.


3.4. Взаимосвязь между водопоглощением и сульфатной атакой

Устойчивость к сульфатной атаке оценивается по потере силы. Во время испытаний на сульфатную коррозию прочность образцов на сжатие и изгиб измерялась после различных циклов сухого и влажного. Относительная прочность после 30 циклов «сухой-влажный» представлена ​​на рисунке 10.Из рисунка 10 видно, что прочность на сжатие уменьшилась после сульфатной атаки, и образец с w / c 0,45 показал большую потерю прочности, чем 0,45. Высокое значение w / c привело к более слабой устойчивости к сульфатной атаке. Результатов

.

Как делается бетон (новое исследование) - Цементный бетон

Как производится бетон: - Бетон представляет собой жидкую смесь цемента, воды, песка и гравия . Бетон можно заливать в формы или формы, и он затвердеет, чтобы создать необходимые компоненты бетонной конструкции. Вам интересно узнать о микроструктуре бетона? Вот Новое исследование по микроструктуре бетона.

Химическая реакция и гидратация

схватывание и твердение бетона вызвано химической реакцией между портландцементом и водой, это можно продемонстрировать, добавив небольшое количество цемента в воду, содержащую индикатор, быстрое развитие синего цвета отражает выделение гидроксила. Ионы из растворяющегося цемента химическая реакция между цементом и водой называется гидратацией.

Связанные: - Высокопрочные свойства бетона, прочность, добавки и состав смеси

Рис.1. Состав бетона

Растворение цемента увеличивает уровни кальция и кремния в растворе, когда концентрация растворенных веществ достигает критических уровней, в результате реакции осаждения образуются новые твердые продукты. Это эскиз зерен цемента, взвешенных в воде.

Твердые продукты Hydration образуют покрытия вокруг частиц цемента и постепенно заполняют пространство между ними, когда покрытия впервые начинают схватываться, происходит устойчивое увеличение прочности по мере того, как покрытия растут вместе, величина прочности, достигаемая за счет смесь цемента и воды зависит от того, насколько эффективно заполнено пространство между зернами.

Бетон затвердеет в течение нескольких часов, , но гидратация продолжается в течение недель, даже лет после укладки. Вот изображение частиц цемента до воздействия воды. Сухой цемент представляет собой мелкодисперсный порошок, и частицы не прикрепляются друг к другу после того, как цемент смешан с водой и оставлен стоять.

Сейчас картина совсем другая, частицы сгруппированы вместе и прикреплены твердым материалом, обеспечивающим структурную целостность.Ученые из Национального института стандартов и технологий научились смоделировать гидратацию цемента на компьютере с помощью компьютерного моделирования.

Гидратация ускоряется за несколько минут, а не дней до гидратации. Моделирование частиц цемента размещаются на дисплее компьютера, компьютер определяет области частиц, которые могут растворяться в воде.

Кусочки растворенного цемента случайным образом диффундируют в воде и реагируют с образованием твердых фаз.Согласно определенным правилам после завершения цикла , растворения, диффузии и осаждения , компьютер переходит к другому циклу, поскольку этот процесс повторяется снова и снова.


Микроструктура бетона

Микроструктура развивает перемычки между частицами, которые обеспечивают прочность материала. Компьютерное моделирование оказалось ценным, поскольку позволяет исследователям тестировать условия и проводить измерения, которые трудно достичь в реальной жизни.В конце моделирования гидратации структура затвердевшего цементного теста очень похожа на ту, что наблюдается под микроскопом.

Гидратация - это экзотермический процесс, при котором в результате химических реакций выделяется тепло, за процессом гидратации можно легко следить, отслеживая выделение тепла, которое сопровождает реакции,

это делается путем отхаркивания раствора из партии бетона и его взвешивания в бутылку, которая помещается в изотермический контейнер, термистор встраивается в свежий раствор , выходной сигнал термистора можно регистрировать с помощью На компьютере результаты этого эксперимента можно представить в виде кривой зависимости температуры от времени .

Подробнее : Производство портландцемента - процесс и материалы

Площадь под основным пиком может быть связана с ранним развитием прочности, начальное растворение цемента Purdue - это кратковременное выделение тепла, показанное первым пиком на калориметрической кривой.

После того, как продукты гидратации начального растворения быстро осаждаются на поверхности каждой частицы цемента, слой действует как защитный барьер и временно задерживает дальнейшее растворение частицы, это замедляет реакцию на несколько часов и называется период покоя.

Наличие периода покоя позволяет транспортировать бетон на строительную площадку, укладывать и обрабатывать формы, конец периода покоя представляет собой начало схватывания, после чего цемент снова начинает реагировать. быстро с водой, поскольку образуются новые продукты гидратации.

Ученые используют измерения других свойств для контроля схватывания и твердения бетона, исследователям часто необходимо знать, какая часть цемента гидратирована.


Степень гидратации

Степень гидратации можно оценить путем нагревания образца цементного теста и измерения потери веса в зависимости от температуры с использованием оборудования для термогравиметрического анализа , свободная вода в образце удаляется путем нагревания до 105 градусов Цельсия при 105 градусах . Образец сухой, но сохраняет свою прочность.

Вода, участвующая в реакциях гидратации, химически соединяется с цементом. Ее можно удалить из образца путем нагревания до 1000 градусов при 1000 градусов всей исходной смеси.вода была удалена из образца. Степень гидратации рассчитывается по весу химически объединенной воды, типичное цементное тесто, отвержденное во влажных условиях, достигает степени гидратации около 80% за 28 дней с,

Электрические свойства образцов цемента или раствора можно отслеживать с течением времени, что приводит к профилям изменений электрического сопротивления. Электрические свойства этого образца цемента измеряются с помощью двух металлических дорог и оборудования, которое измеряет сопротивление и импеданс.

На этой диаграмме показано, как сопротивление электричества через цемент увеличивается по мере того, как цемент гидратируется в раннем возрасте, вода легко проводит ток через образец, но когда продукты гидратации заполняют открытые пространства внутри образца, электрический ток не может проходить так же легко, в этом случае Таким образом, электрические свойства могут быть связаны со степенью гидратации.

Сопротивление и импеданс цемента - это тема исследований, которые когда-нибудь могут изменить методы испытаний свежего бетона в полевых условиях.Текучие свойства бетона очень важны в этой области, потому что качественное строительство требует соответствующего уплотнения.

Стандартное испытание на осадку обеспечивает грубую оценку удобоукладываемости бетона, это испытание широко используется, потому что его легко проводить в полевых условиях, свойства жидкости также являются предметом исследования в лаборатории из-за потока изменений цемента по мере гидратации. Такие свойства, как вязкость и начальное сопротивление потоку, используются для характеристики жидких материалов.

Вода - это жидкость с низкой вязкостью и низким начальным сопротивлением текучести, но бетонный раствор и свежий цементный клей имеют гораздо более высокую вязкость, чем вода.

Вибрация часто используется для преодоления этого сопротивления в бетоне в лаборатории, жидкие свойства цементного теста можно измерить с помощью этого реометра Brookfield , исследователи используют более крупное оборудование, такое как реометр Tattersall, для измерения свойств раствора и бетона.


Реологическое оборудование т может использоваться для измерения начального сопротивления потоку, которое во время схватывания называется пределом текучести.Предел текучести начинает увеличиваться, и способность к течению теряется, исследователи заинтересованы в характеристиках текучести, чтобы понять, как процесс гидратации делает свежий бетон жестким и приводит к его застыванию.

Скорость гидратации можно контролировать несколькими способами, такими как температура, тип цемента и примеси . влияет на скорость, одной из наиболее важных переменных является температура окружающей среды, высокие температуры ускоряют гидратацию, так что схватывание также происходит быстрее. как последующее развитие силы.

Когда температура понижается, происходит обратное, хорошее практическое правило состоит в том, что на каждые 10 градусов Цельсия изменение температуры скорость гидратации изменяется в два раза, например, повышение температуры с 20 градусов Цельсия до 30. градусов Цельсия удваивает скорость гидратации , важно помнить, что когда погода становится более прохладной, бетон медленно затвердевает и его необходимо хранить в форме в течение более длительного периода времени.

Гидратацию бетона также можно контролировать, используя различные типы цемента для противодействия влиянию высоких или низких температур в полевых условиях, например, использование 3-х типов цемента противодействует холодным температурам, потому что они быстрее гидратируются, есть также специальные химические вещества которые регулируют гидратацию, могут быть добавлены в бетон, чтобы ускорить процесс гидратации.

Установить замедлители гидратации эти материалы широко доступны.

Таким образом, гидратация - это химическая реакция между цементом и водой, которая связывает частицы цемента и заполнитель в бетоне в прочный, и во время массирования одним из важных преимуществ бетона перед другими строительными материалами является то, что он смешивается и формируется на месте и может принимать очень больших и гибких. Способность бетона быстро набирать прочность делает его ценным материалом для дорог, зданий, мостов и других важных сооружений .

Вам также понравится:

(Посещали 1599 раз, сегодня 1 посещали)

Продолжить чтение

.

Изменение прочности бетона на сжатие во времени

Возраст бетонных конструкций во многом зависит от их прочности и долговечности. Понимание зависимости прочности бетона от времени помогает узнать эффект нагрузки в более позднем возрасте.

В этом разделе объясняется различное влияние возраста на прочность бетона.

Изменение прочности бетона во времени

Согласно исследованиям, прочность бетона на сжатие с возрастом увеличивается.Большинство исследований проводилось для изучения прочности бетона на 28-е сутки. Но на самом деле сила на 28-й день меньше по сравнению с долгосрочной силой, которую он может набрать с возрастом.

Изменение прочности бетона с возрастом можно исследовать разными методами. На рисунке 1 ниже показано изменение прочности бетона в сухом и влажном состоянии. Этот график основан на исследовании, проведенном Байкофом и Сиглофом (1976).

Они обнаружили, что в сухих условиях через 1 год прочность бетона не увеличивается, как показано на рисунке-1.С другой стороны, прочность образцов, хранящихся во влажной среде (при 15 ° C), значительно увеличивается.

Рис.1: Изменение прочности бетона во времени

Рис. 2: Изменение прочности бетона на сжатие со временем (Уоша и Вендт (1989))

Скорость увеличения силы с течением времени

Процесс непрерывной гидратации повысит прочность бетона. Если условия окружающей среды, которым подвергается бетон, способствуют гидратации, прочность с возрастом постоянно увеличивается.Но эта скорость гидратации высока на ранних этапах и задерживается позже.

Прочность на сжатие, полученная бетоном, измеряется на 28-й день, после чего показатель прочности снижается. Прочность на сжатие, полученная в более позднем возрасте, проверяется с помощью неразрушающих испытаний.

Подробнее: Почему мы проверяем прочность бетона на сжатие через 28 дней?

В таблице 1 ниже показан темп набора силы с первого по 28 день.

Таблица 1: Прочность бетона с возрастом

Возраст Прирост силы (%)
1 день 16%
3 дня 40%
7 дней 65%
14 дней 90%
28 дней 99%

Правильные условия отверждения помогут предотвратить утечку влаги, которая облегчит реакции увеличения прочности.На рисунке 3 ниже показано изменение прочности на сжатие с возрастом для различных условий отверждения.

Рис.3. Прочность на сжатие в зависимости от возраста для различных сред отверждения (Мамлук и Заневски)

Факторы, влияющие на длительную прочность бетона на сжатие

Достижение прочности бетона на сжатие в долгосрочной перспективе отличается от набора прочности в раннем возрасте. На долговременную прочность бетона на сжатие влияют следующие факторы:

1.Соотношение вода-цемент

Адекватное водоцементное соотношение необходимо для прохождения реакций гидратации в более позднем возрасте. Реакции гидратации улучшают прочность бетона на сжатие.

Недостаточное содержание воды приведет к образованию огромного количества пор до 28 дней, что со временем увеличит шансы ползучести и усадки. Это отрицательно скажется на прочности бетона на сжатие.

Также читайте: Технологичность бетона - типы и влияние на прочность бетона

2.Условия отверждения

Надлежащие условия отверждения - это своего рода подготовка бетона перед его эксплуатацией. Степень отверждения бетона зависит от предполагаемых условий воздействия на конструкции.

Правильно затвердевший и высококачественный бетон не подвержен старению в экстремальных условиях. Следовательно, эффективное отверждение улучшает сжимаемость бетона.

Также читайте: Отверждение цементного бетона - время и продолжительность

3.Температура

Исследования показали, что высокая температура ускоряет реакцию гидратации, но получаемые продукты не будут однородными или хорошего качества. В результате могут остаться поры, влияющие на прочность бетона.

4. Условия окружающей среды

Бетонная конструкция с возрастом подвергается воздействию таких условий окружающей среды, как дождь, замерзание и таяние, химические воздействия и т. Д. Непроницаемый бетон может подвергаться проникновению влаги, частому замерзанию и оттаиванию, что приводит к образованию трещин в бетоне.

Химическое воздействие может вызвать коррозию арматуры, что снижает ее предел текучести. Все это может повлиять на прочность бетона.

.

Смотрите также

Новости

Скидки 30% на ремонт квартиры под ключ за 120 дней

Компания МастерХаус предлагает качественные услуги по отделке, которые выполнены в соответствии с вашими пожеланиями. Даже самые невероятные фантазии можно воплотить жизнь, стоит только захотеть.

29-01-2019 Хиты:0 Новости

Подробнее

Есть вопросы? Или хотите сделать заказ?

Оставьте свои данные и мы с вами свяжемся в ближайшее время.

Индекс цитирования